Schwarz problem for first order elliptic systems in unbounded sectors
Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 6-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we deal with a Schwarz-type boundary value problem for both the inhomogeneous Cauchy–Riemann equation and the generalized Beltrami equation on an unbounded sector with angle $\vartheta=\pi/n$, $n\in\mathbb N$. By the method of plane parquetingreflection and the Cauchy–Pompeiu formula for the sector, the Schwarz–Poisson integral formula is obtained. We also investigate the boundary behaviour and the $C^\alpha$-property of a Schwarz-type as well as of a Pompeiu-type operator. The solution to the Schwarz problem of the Cauchy–Riemann equation is explicitly expressed. Sufficient conditions on the coefficients of the generalized Beltrami equation are obtained under which the corresponding system of integral equations is contractive. This proves the existence of a unique solution to the Schwarz problem of the generalized Beltrami equation.
@article{EMJ_2014_5_4_a0,
     author = {M. Akel and H. Begehr},
     title = {Schwarz problem for first order elliptic systems in unbounded sectors},
     journal = {Eurasian mathematical journal},
     pages = {6--24},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a0/}
}
TY  - JOUR
AU  - M. Akel
AU  - H. Begehr
TI  - Schwarz problem for first order elliptic systems in unbounded sectors
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 6
EP  - 24
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a0/
LA  - en
ID  - EMJ_2014_5_4_a0
ER  - 
%0 Journal Article
%A M. Akel
%A H. Begehr
%T Schwarz problem for first order elliptic systems in unbounded sectors
%J Eurasian mathematical journal
%D 2014
%P 6-24
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a0/
%G en
%F EMJ_2014_5_4_a0
M. Akel; H. Begehr. Schwarz problem for first order elliptic systems in unbounded sectors. Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 6-24. http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a0/

[1] S. Abdymanapov, H. Begehr, A. Tungatarov, “Some Schwarz problems in a quarter plane”, Evraziiskii Matematicheskii Zhurnal, 2005, no. 3, 22–35

[2] S. Abdymanapov, H. Begehr, G. Harutyunyan, A. Tungatarov, “Four boundary value problems for the Cauchy–Riemann equation in a quarter plane”, More Progress in Analysis, Proc. 5th Intern. ISAAC Congress (Catania, Italy, 2005), eds. H. Begehr, F. Nicolosi, World Sci., Singapore, 2009, 1137–1147 | DOI | Zbl

[3] M. Akel, H. Hussein, “Two basic boundary value problems for inhomogeneous Cauchy–Riemann equation in an infinite sector”, Adv. Pure and Appl. Math., 3 (2012), 315–328 | DOI | MR | Zbl

[4] U. Aksoy, Schwarz problem for complex differential equations, Ph. D. thesis, METU, Ankara, 2007

[5] H. Begehr, Complex analytic methods for partial differential equations: an introductory text, World Sci., Singapore, 1994 | MR | Zbl

[6] H. Begehr, G. Harutyunyan, “Complex boundary value problems in a quarter plane”, Complex Analysis and Applications, Proc. 13th Intern. Conf. on Finite or Infinite Dimensional Complex Analysis and Appl. (Shantou, China, 2005), eds. Y. Wang et al., World Sci., New Jersey, 2006, 1–10 | DOI | Zbl

[7] H. Begehr, E. Gaertner, “Dirichlet problem for the inhomogeneous polyharmonic equation in the upper half plane”, Georg. Math. J., 14:1 (2007), 33–52 | MR | Zbl

[8] H. Begehr, E. Obolashvili, “Some boundary value problems for a Beltrami equation”, Complex Var., Theory Appl., 26 (1994), 113–122 | DOI | MR | Zbl

[9] H. Begehr, D. Schmersau, “The Schwarz problem for polyanalytic functions”, Z. Anal. Anwend., 24 (2005), 341–351 | DOI | MR | Zbl

[10] H. Begehr, T. Vaitekhovich, “Harmonic boundary value problems in half disc and half ring”, Functiones et Approximatio, 40:2 (2009), 251–282 | DOI | MR | Zbl

[11] H. Begehr, T. Vaitekhovich, “Harmonic Dirichlet problem for some equilateral triangle”, Comp. Var. Ellip. Eq., 57 (2012), 185–196 | DOI | MR | Zbl

[12] H. Begehr, T. Vaitekhovich, “How to find harmonic Green functions in the plane”, Comp. Var. Ellip. Eq., 56:12 (2011), 1169–1181 | DOI | MR | Zbl

[13] H. Begehr, T. Vaitekhovich, “Green functions, reflections and plane parqueting”, Eurasian Math. J., 1:1 (2010), 17–31 ; “Green functions, reflections, and plane parqueting revisited”, Eurasian Math. J., 2:2 (2011), 139–142 | MR | Zbl | MR | Zbl

[14] H. Begehr, T. Vaitekhovich, “The parqueting-reflection principle for constructing Green functions”, Analytic Methods of Analysis and Differential Equations, AMADE 2012 (Cottenham, UK), eds. S. V. Rogosin, M. V. Dubatovskaya, Cambridge Scientific Publishers, Cambridge, 2013, 11–20

[15] H. Begehr, T. Vaitekhovich, “Schwarz problem in lens and lune”, Complex Var. Ell. Eqs., 59:1 (2013), 76–84 | DOI | MR

[16] S. Burgumbayeva, Boundary value problems for tri-harmonic functions in the unit disc, Ph. D. thesis, FU Berlin, 2009 http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000012636

[17] Z. Du, Boundary value problems for higher order complex partial differential equations, Ph. D. thesis, FU Berlin, 2008 http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003677

[18] A. S. Fokas, “A unified approach to boundary value problems”, CBMS-NSF Regional Conf., Ser. in Appl. Math., 78, Society for Industrial and Applied Mathematics, Philadelphia, 2008 | MR | Zbl

[19] F. Gakhov, Boundary value problems, Pergamon Press, Oxford, 1966 | MR | Zbl

[20] E. Gaertner, Basic complex boundary value problems in the upper half plane, Ph. D. thesis, FU Berlin, 2006 http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002129

[21] N. Muskhelishvili, Singular integral equations, Noordhoff, Groningen, 1953 | MR | Zbl

[22] S. Rogosin, A. Koroleva, Advances in applied analysis, Springer, Basel, 2012 | MR

[23] B. Shupeyeva, Some basic boundary value problems for complex partial differential equations in quarter ring and half hexagon, FU Berlin, 2013 http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000094596

[24] W. Tutschke, Partielle differentialgleichungen-klassische, funktrionalanalytische und komplexe methoden, Teubner Texte zur Mathematik, 27, B. G. Teubner, Leipzig, 1983 (in German) | MR

[25] W. Tutschke, Distributionentheoretische methoden in der komplexen analysis, Vorlesungsskript, Technische Universitaet Graz, 1998 (in German)

[26] T. Vaitsiakhovich, Boundary value problems for complex partial differential equations in a ring domain, Ph. D thesis, FU Berlin, 2008 http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003859

[27] I. Vekua, Generalized analytic functions, International Series of Monographs in Pure and Applied Mathematics, Pergamon Press, Oxford, 1962 | MR | Zbl

[28] Y. Wang, Boundary value problems for complex partial differential equations in fan-shaped domains, Ph. D thesis, FU Berlin, 2011 http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000021359

[29] Y. F. Wang, Y. J. Wang, “Schwarz-type problem of nonhomogeneous Cauchy–Riemann equation on a triangle”, J. Math. Anal. Appl., 377 (2011), 557–570 | DOI | MR | Zbl

[30] U. Yüksel, “A Schwarz problem for the generalized Beltrami equation”, Complex Var. Elliptic Eqs., 56:6 (2011), 503–511 | DOI | MR | Zbl