@article{EMJ_2014_5_3_a9,
author = {A. A. Vasil'eva},
title = {Embeddings of weighted {Sobolev} classes on a {John} domain},
journal = {Eurasian mathematical journal},
pages = {129--134},
year = {2014},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a9/}
}
A. A. Vasil'eva. Embeddings of weighted Sobolev classes on a John domain. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 129-134. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a9/
[1] K. F. Andersen, H. P. Heinig, “Weighted norm inequalities for certain integral operators”, SIAM J. Math. Anal., 14:4 (1983), 834–844 | DOI
[2] G. Bennett, “Some elementary inequalities, III”, Quart. J. Math. Oxford Ser. (2), 42:166 (1991), 149–174 | DOI
[3] M. Bricchi, “Existence and properties of $h$-sets”, Georgian Mathematical Journal, 9:1 (2002), 13–32
[4] M. Christ, “A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral”, Colloq. Math., 60/61:2 (1990), 601–628
[5] H. P. Heinig, “Weighted norm inequalities for certain integral operators, II”, Proc. AMS, 95:3 (1985), 387–395 | DOI
[6] G. Leoni, A first Course in Sobolev Spaces, Graduate studies in Mathematics, 105, AMS, Providence, Rhode Island, 2009 | DOI
[7] A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain”, Proc. Steklov Inst. Math., 280, 2013, 91–119 | DOI
[8] A. A. Vasil'eva, “Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some $h$-set”, Russ. J. Math. Phys., 20:3 (2013), 360–373 | DOI
[9] A. A. Vasil'eva, “Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some $h$-set”, Russ. J. Math. Phys., 21:1 (2014), 112–122 | DOI
[10] A. A. Vasil'eva, Estimates for norms of two-weighted summation operators on a tree under some conditions on weights, arXiv: 1311.0375