Embeddings of weighted Sobolev classes on a John domain
Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 129-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, embedding theorems for weighted Sobolev classes are obtained. Here weights are functions of distance to some $h$-set.
@article{EMJ_2014_5_3_a9,
     author = {A. A. Vasil'eva},
     title = {Embeddings of weighted {Sobolev} classes on a {John} domain},
     journal = {Eurasian mathematical journal},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a9/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Embeddings of weighted Sobolev classes on a John domain
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 129
EP  - 134
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a9/
LA  - en
ID  - EMJ_2014_5_3_a9
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Embeddings of weighted Sobolev classes on a John domain
%J Eurasian mathematical journal
%D 2014
%P 129-134
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a9/
%G en
%F EMJ_2014_5_3_a9
A. A. Vasil'eva. Embeddings of weighted Sobolev classes on a John domain. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 129-134. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a9/

[1] K. F. Andersen, H. P. Heinig, “Weighted norm inequalities for certain integral operators”, SIAM J. Math. Anal., 14:4 (1983), 834–844 | DOI

[2] G. Bennett, “Some elementary inequalities, III”, Quart. J. Math. Oxford Ser. (2), 42:166 (1991), 149–174 | DOI

[3] M. Bricchi, “Existence and properties of $h$-sets”, Georgian Mathematical Journal, 9:1 (2002), 13–32

[4] M. Christ, “A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral”, Colloq. Math., 60/61:2 (1990), 601–628

[5] H. P. Heinig, “Weighted norm inequalities for certain integral operators, II”, Proc. AMS, 95:3 (1985), 387–395 | DOI

[6] G. Leoni, A first Course in Sobolev Spaces, Graduate studies in Mathematics, 105, AMS, Providence, Rhode Island, 2009 | DOI

[7] A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain”, Proc. Steklov Inst. Math., 280, 2013, 91–119 | DOI

[8] A. A. Vasil'eva, “Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some $h$-set”, Russ. J. Math. Phys., 20:3 (2013), 360–373 | DOI

[9] A. A. Vasil'eva, “Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some $h$-set”, Russ. J. Math. Phys., 21:1 (2014), 112–122 | DOI

[10] A. A. Vasil'eva, Estimates for norms of two-weighted summation operators on a tree under some conditions on weights, arXiv: 1311.0375