The predual space of a $\mathrm{JBW}^*$-triple
Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 125-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper $\mathrm{JB}^*$-triples which are dual Banach spaces are considered as analogues of $\mathrm{JBW}^*$-algebras. For $\mathrm{JBW}^*$-triples an analogue of the classical theorem of Vitali–Hahn–Saks on convergent sequences of measures and a theorem on weak compactness of a set of normal functionals are proved.
@article{EMJ_2014_5_3_a8,
     author = {A. A. Rakhimov},
     title = {The predual space of a $\mathrm{JBW}^*$-triple},
     journal = {Eurasian mathematical journal},
     pages = {125--128},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a8/}
}
TY  - JOUR
AU  - A. A. Rakhimov
TI  - The predual space of a $\mathrm{JBW}^*$-triple
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 125
EP  - 128
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a8/
LA  - en
ID  - EMJ_2014_5_3_a8
ER  - 
%0 Journal Article
%A A. A. Rakhimov
%T The predual space of a $\mathrm{JBW}^*$-triple
%J Eurasian mathematical journal
%D 2014
%P 125-128
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a8/
%G en
%F EMJ_2014_5_3_a8
A. A. Rakhimov. The predual space of a $\mathrm{JBW}^*$-triple. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 125-128. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a8/

[1] Sh. A. Ayupov, “Ergodic theorems for Markov operators in Jordan algebras”, Proceedings of the Academy of Sciences of Uzbekistan, 3 (1982), 12–15

[2] A. Grothendieck, “Sur les applications linearies faiblement compactes d'espaces du type $C(K)$”, Canad. J. Math., 5 (1953), 129–173 | DOI

[3] G. Horn, Klassifikation der JBW$^*$-Tripel vom Typ I, Dissertation der Eberhard-Karls-Universitat in Tubingen, 1984

[4] G. Horn, “Characterization of the predual and ideal structure of a JBW$^*$-triple”, Math. Scand., 61 (1987), 117–133

[5] W. Kaup, “A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces”, Math. Z., 183 (1983), 503–529 | DOI

[6] T. A. Sarymsakov, Sh. A. Ayupov, Dj. Kh. Khadjiev, V. I. Chilin, Ordered algebras, “FAN” Publisher, Uzbekistan, 1983, 192 pp.