Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_3_a7, author = {Z. I. Ismailov and R. \"Ozt\"urk Mert}, title = {Normal extensions of a singular differential operator on the right semi-axis}, journal = {Eurasian mathematical journal}, pages = {117--124}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a7/} }
TY - JOUR AU - Z. I. Ismailov AU - R. Öztürk Mert TI - Normal extensions of a singular differential operator on the right semi-axis JO - Eurasian mathematical journal PY - 2014 SP - 117 EP - 124 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a7/ LA - en ID - EMJ_2014_5_3_a7 ER -
Z. I. Ismailov; R. Öztürk Mert. Normal extensions of a singular differential operator on the right semi-axis. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 117-124. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a7/
[1] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer, New York, 1988
[2] E. Bairamov, R. Öztürk Mert, Z. I. Ismailov, “Selfadjoint Extension of Singular Differential Operator”, J. Math. Chemistry, 50 (2012), 1100–1110 | DOI
[3] A. Brown, C. Pearsy, “Spectra of tensor products of operators”, Proc. Amer. Math. Soc., 17:1 (1966), 162–166 | DOI
[4] E. A. Coddington, “Extension theory of formally normal and symmetric subspaces”, Mem. Amer. Math. Soc., 134, 1973, 1–80
[5] N. Dunford, J. T. Schwartz, Linear Operators, v. II, Second ed., Interscience, New York, 1963
[6] W. N. Everitt, A. Zettl, “Differential Operators Generated by a Countable Number of Quasi-Differential Expressions on the Real Line”, Proc. London Math. Soc., 64 (1992), 524–544 | DOI
[7] V. I. Gorbachuk, M. L. Gorbachuk, “On boundary value problems for a first-order differential equation with operator coefficients and the expansion in eigenvectors of this equation”, Soviet Math. Dokl., 14:1 (1973), 244–248
[8] Z. I. Ismailov, R. Öztürk Mert, “Selfadjoint Extension of Singular Multipoint Differential Operator of First Order”, Electr. J. Differen. Equat., 2013:129 (2013), 1–11
[9] Z. I. Ismailov, “Selfadjoint extensions of multipoint singular differential operators”, Electr. J. Differen. Equat., 2013:231 (2013), 1–10
[10] Z. I. Ismailov, “Compact inverses of first-order normal differential operators”, J. Math. Anal. Appl., USA, 320:1 (2006), 266–278 | DOI
[11] Z. I. Ismailov, “Discreteness of the spectrum of the normal differential operators of second order”, Doklady NAS of Belarus, 49:3 (2005), 5–7 (in Russian)
[12] Z. I. Ismailov, “On the normality of first order differential operators”, Bulletin of the Polish Academy of Sciences (Math.), 51:2 (2003), 139–145
[13] Z. I. Ismailov, H. Karatash, “Some necessary condition for normality of differential operators”, Doklady Mathematics, Birmingham, USA, 62:2 (2000), 277–279
[14] Z. I. Ismailov, “Discreteness of the spectrum of the normal differential operators for first order”, Doklady Mathematics, Birmingham, USA, 57:1 (1998), 32–33
[15] F. G. Maksudov, Z. I. Ismailov, “On the one necessary condition for normality of differential operators”, Doklady Mathematics, Birmingham, USA, 59:3 (1999), 422–424
[16] F. G. Maksudov, Z. I. Ismailov, “Normal Boundary Value Problems for Differential Equation of First Order”, Doklady Mathematics, Birmingham, USA, 5:2 (1996), 659–661
[17] F. G. Maksudov, Z. I. Ismailov, “Normal boundary value problems for differential equations of higher order”, Turkish Journal of Mathematics, 20:2 (1996), 141–151
[18] J. von Neumann, “Allgemeine Eigenwerttheorie Hermitescher Funktional operatoren”, Math. Ann., 102 (1929–1930), 49–131
[19] F. S. Rofe-Beketov, A. M. Kholkin, Spectral Analysis of Differential-Operators, World Scientific Monograph Series in Mathematics, 7, World Scientific Publishing Co. Pte. Ltd., Hanckensack, NJ, 2005 | DOI
[20] A. Zettl, Sturm–Liouville Theory, Mathematical Surveys and Monographs, 121, Amer. Math. Soc., Rhode Island, 2005