Normal extensions of a singular differential operator on the right semi-axis
Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 117-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, based on the method of Everitt–Zettl and using the Calkin–Gorbachuk method, all normal extensions of the minimal operator generated by a linear singular formally normal differential-operator expression of the first order in Hilbert spaces of vector-functions on the right semi-axis in terms of boundary values are described. Furthermore, the structure of the spectrum of these extensions is investigated.
@article{EMJ_2014_5_3_a7,
     author = {Z. I. Ismailov and R. \"Ozt\"urk Mert},
     title = {Normal extensions of a singular differential operator on the right semi-axis},
     journal = {Eurasian mathematical journal},
     pages = {117--124},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a7/}
}
TY  - JOUR
AU  - Z. I. Ismailov
AU  - R. Öztürk Mert
TI  - Normal extensions of a singular differential operator on the right semi-axis
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 117
EP  - 124
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a7/
LA  - en
ID  - EMJ_2014_5_3_a7
ER  - 
%0 Journal Article
%A Z. I. Ismailov
%A R. Öztürk Mert
%T Normal extensions of a singular differential operator on the right semi-axis
%J Eurasian mathematical journal
%D 2014
%P 117-124
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a7/
%G en
%F EMJ_2014_5_3_a7
Z. I. Ismailov; R. Öztürk Mert. Normal extensions of a singular differential operator on the right semi-axis. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 117-124. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a7/

[1] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer, New York, 1988

[2] E. Bairamov, R. Öztürk Mert, Z. I. Ismailov, “Selfadjoint Extension of Singular Differential Operator”, J. Math. Chemistry, 50 (2012), 1100–1110 | DOI

[3] A. Brown, C. Pearsy, “Spectra of tensor products of operators”, Proc. Amer. Math. Soc., 17:1 (1966), 162–166 | DOI

[4] E. A. Coddington, “Extension theory of formally normal and symmetric subspaces”, Mem. Amer. Math. Soc., 134, 1973, 1–80

[5] N. Dunford, J. T. Schwartz, Linear Operators, v. II, Second ed., Interscience, New York, 1963

[6] W. N. Everitt, A. Zettl, “Differential Operators Generated by a Countable Number of Quasi-Differential Expressions on the Real Line”, Proc. London Math. Soc., 64 (1992), 524–544 | DOI

[7] V. I. Gorbachuk, M. L. Gorbachuk, “On boundary value problems for a first-order differential equation with operator coefficients and the expansion in eigenvectors of this equation”, Soviet Math. Dokl., 14:1 (1973), 244–248

[8] Z. I. Ismailov, R. Öztürk Mert, “Selfadjoint Extension of Singular Multipoint Differential Operator of First Order”, Electr. J. Differen. Equat., 2013:129 (2013), 1–11

[9] Z. I. Ismailov, “Selfadjoint extensions of multipoint singular differential operators”, Electr. J. Differen. Equat., 2013:231 (2013), 1–10

[10] Z. I. Ismailov, “Compact inverses of first-order normal differential operators”, J. Math. Anal. Appl., USA, 320:1 (2006), 266–278 | DOI

[11] Z. I. Ismailov, “Discreteness of the spectrum of the normal differential operators of second order”, Doklady NAS of Belarus, 49:3 (2005), 5–7 (in Russian)

[12] Z. I. Ismailov, “On the normality of first order differential operators”, Bulletin of the Polish Academy of Sciences (Math.), 51:2 (2003), 139–145

[13] Z. I. Ismailov, H. Karatash, “Some necessary condition for normality of differential operators”, Doklady Mathematics, Birmingham, USA, 62:2 (2000), 277–279

[14] Z. I. Ismailov, “Discreteness of the spectrum of the normal differential operators for first order”, Doklady Mathematics, Birmingham, USA, 57:1 (1998), 32–33

[15] F. G. Maksudov, Z. I. Ismailov, “On the one necessary condition for normality of differential operators”, Doklady Mathematics, Birmingham, USA, 59:3 (1999), 422–424

[16] F. G. Maksudov, Z. I. Ismailov, “Normal Boundary Value Problems for Differential Equation of First Order”, Doklady Mathematics, Birmingham, USA, 5:2 (1996), 659–661

[17] F. G. Maksudov, Z. I. Ismailov, “Normal boundary value problems for differential equations of higher order”, Turkish Journal of Mathematics, 20:2 (1996), 141–151

[18] J. von Neumann, “Allgemeine Eigenwerttheorie Hermitescher Funktional operatoren”, Math. Ann., 102 (1929–1930), 49–131

[19] F. S. Rofe-Beketov, A. M. Kholkin, Spectral Analysis of Differential-Operators, World Scientific Monograph Series in Mathematics, 7, World Scientific Publishing Co. Pte. Ltd., Hanckensack, NJ, 2005 | DOI

[20] A. Zettl, Sturm–Liouville Theory, Mathematical Surveys and Monographs, 121, Amer. Math. Soc., Rhode Island, 2005