A new characterization of sporadic Higman--Sims and Held groups
Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 102-116

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group and $\omega(G)$ be the set of element orders of $G$. Let $k\in\omega(G)$ and $s_k$ be the number of elements of order $k$ in $G$. Let $\mathrm{nse}(G)=\{s_k|k\in\omega(G)\}$. The projective special linear groups $L_3(4)$ and $L_3(5)$ are uniquely determined by $\mathrm{nse}$. In this paper, we prove that if $G$ is a group such that $\mathrm{nse}(G)=\mathrm{nse}(M)$ where $M$ is a sporadic Higman–Sims or Held group, then $G\cong M$.
@article{EMJ_2014_5_3_a6,
     author = {Y. Yang and S. Liu},
     title = {A new characterization of sporadic {Higman--Sims} and {Held} groups},
     journal = {Eurasian mathematical journal},
     pages = {102--116},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a6/}
}
TY  - JOUR
AU  - Y. Yang
AU  - S. Liu
TI  - A new characterization of sporadic Higman--Sims and Held groups
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 102
EP  - 116
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a6/
LA  - en
ID  - EMJ_2014_5_3_a6
ER  - 
%0 Journal Article
%A Y. Yang
%A S. Liu
%T A new characterization of sporadic Higman--Sims and Held groups
%J Eurasian mathematical journal
%D 2014
%P 102-116
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a6/
%G en
%F EMJ_2014_5_3_a6
Y. Yang; S. Liu. A new characterization of sporadic Higman--Sims and Held groups. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 102-116. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a6/