Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_3_a5, author = {K. P. R. Rao and K. R. K. Rao}, title = {A {Suzuki} type fixed point theorem for a hybrid pair of maps in partial {Hausdorff} metric spaces}, journal = {Eurasian mathematical journal}, pages = {93--101}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a5/} }
TY - JOUR AU - K. P. R. Rao AU - K. R. K. Rao TI - A Suzuki type fixed point theorem for a hybrid pair of maps in partial Hausdorff metric spaces JO - Eurasian mathematical journal PY - 2014 SP - 93 EP - 101 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a5/ LA - en ID - EMJ_2014_5_3_a5 ER -
K. P. R. Rao; K. R. K. Rao. A Suzuki type fixed point theorem for a hybrid pair of maps in partial Hausdorff metric spaces. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 93-101. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a5/
[1] T. Abdeljawad, E. Karapinar, K. Tas, “Existence and uniqueness of a common fixed point on partial metric spaces”, Appl. Math. Lett., 24:11 (2011), 1894–1899 | DOI
[2] T. Abdeljawad, E. Karapinar, K. Tas, “A generalized contraction principle with control functions on partial metric spaces”, Comput. Math. Appl., 63:3 (2012), 716–719 | DOI
[3] T. Abdeljawad, H. Aydi, E. Karapinar, “Coupled fixed points for Meir–Keeler contractions in ordered partial metric spaces”, Math. Problems Eng., 2012 (2012), 327273, 20 pp. | DOI
[4] I. Altun, H. Simsek, “Some fixed point theorems on dualistic partial metric spaces”, J. Adv. Math. Stud., 1 (2008), 1–8
[5] I. Altun, F. Sola, H. Simsek, “Generalized contractions on partial metric spaces”, Topology Appl., 157 (2010), 2778–2785 | DOI
[6] H. Aydi, M. Abbas, C. Vetro, “Partial Hausdorff metric and Nadler's fixed point theorem on partial metric space”, Topology Appl., 159:14 (2012), 3234–3242 | DOI
[7] H. Aydi, E. Karapinar, Sh. Rezapour, “A generalized Meir–Keeler contraction type on partial metric spaces”, Abstr. Appl. Anal., 2012 (2012), 287127, 10 pp.
[8] H. Aydi, S. Hadj-Amor, E. Karapinar, “Berinde type generalized contractions on partial metric spaces”, Abstr. Appl. Anal., 2013 (2013), 312479, 10 pp.
[9] C. Di Bari, P. Vetro, “Fixed points for weak $\phi$-contractions on partial metric spaces”, Int. J. Eng. Contemp. Math. Sci., 1:1 (2011), 5–13
[10] C. M. Chen, E. Karapinar, “Fixed point results for the alpha-Meir–Keeler contraction on partial Hausdorff metric spaces”, J. Inequalities Appl., 2013:410 (2013), 1–14
[11] Lj. Ciric, B. Samet, C. Vetro, “Common fixed points of generalized contractions on partial metric spaces and an application”, Appl. Math. Comput., 218 (2011), 2398–2406 | DOI
[12] P. Z. Daffer, H. Kaneko, “Fixed points of generalized contractive multi-valued mappings”, J. Math. Anal. Appl., 192:2 (1995), 655–666 | DOI
[13] B. Damjanovic, B. Samet, C. Vetro, “Common fixed point theorems for multi-valued maps”, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 818–824 | DOI
[14] G. Jungck, B. E. Rhoades, “Fixed points for set valued functions without continuity”, Indian J. Pure Applied Math., 29 (1998), 227–238
[15] E. Karapinar, “Generalizations of Caristi Kirk's theorem on partial metric spaces”, Fixed Point Theory Appl., 2011:4 (2011), 7 pp.
[16] E. Karapinar, “A note on common fixed point theorems in partial metric spaces”, Miskolc Math. Notes, 12:2 (2011), 185–191
[17] E. Karapinar, I. M. Erhan, “Fixed point theorems for operators on partial metric spaces”, Appl. Math. Lett., 24:11 (2011), 1900–1904 | DOI
[18] E. Karapinar, I. M. Erhan, “Cyclic contractions and fixed point theorems”, Filomat., 26:4 (2012), 777–782 | DOI
[19] E. Karapinar, N. Shobkolaei, S. Sedghi, S. M. Vaezpour, “A common fixed point theorem for cyclic operators on partial metric spaces”, Filomat., 26:2 (2012), 407–414 | DOI
[20] E. Karapinar, U. Yuksel, “Some common fixed point theorems in partial metric spaces”, J. Appl. Math. Vol., 2011 (2011), 263621, 17 pp.
[21] E. Karapinar, V. Rakocevic, “On cyclic generalized weakly C-contractions on partial metric spaces”, J. Appl. Math., 2013 (2013), 831491, 7 pp. | DOI
[22] M. Kikkawa, T. Suzuki, “Three fixed point theorems for generalized contractions with constants in complete metric spaces”, Nonlinear Anal., 69 (2008), 2942–2949 | DOI
[23] S. G. Matthews, “Partial metric topology, Proc. 8th Summer conference on General Topology and Applications”, Ann. New York Ac. Sci., 728 (1994), 183–197 | DOI
[24] S. B. Nadler, “Mutivalued contraction mappings”, Pacific. J. Math., 30 (1969), 475–488 | DOI
[25] D. Paesano, P. Vetro, “Suzki's type Characterization of completeness for partial metric spaces and fixed points for partially ordered metric spaces”, Topology Appl., 159:3 (2012), 911–920 | DOI
[26] O. Popescu, “Two generalizations of some fixed point theorems”, Comput. Math. Appl., 69:10 (2011), 3912–3919 | DOI
[27] K. P. R. Rao, G. N. V. Kishore, K. A. S. N. V. Prasad, “A unique common fixed point theorem for two maps under $(\Psi-\Phi)$ contractive condition in partial metric spaces”, Mathematical Sciences, 6:9 (2012)
[28] K. P. R. Rao, G. N. V. Kishore, “A unique common fixed point theorem for four maps under $(\Psi-\Phi)$ contractive condition in partial metric spaces”, Bulletin Math. Anal. Appl., 3:3 (2011), 56–63
[29] A. Roldan, J. Martinez-Moreno, C. Roldan, E. Karapinar, “Multidimensional fixed point theorems in partially ordered complete partial metric spaces under $(\Psi-\Phi)$-contractivity conditions”, Abstract and Applied Analysis, 2013 (2013), 634371, 12 pp. | DOI
[30] B. D. Rouhani, S. Moradi, “Common fixed point of multivalued generalized $\phi$-weak contractive mappings”, Fixed Point Theory Appl., 2010 (2010), 708984, 13 pp.
[31] S. L. Singh, S. N. Mishra, “Coincidence theorems for certain classes of hybrid contractions”, Fixed point Theory Appl., 2010 (2010), 898109, 14 pp.
[32] T. Suzuki, M. Kikkawa, “Some remarks on a recent generalization of the Banach contraction principle”, Fixed Point Theory Appl., Yokohama Publ., Yokohama, Japan, 2008, 151–161
[33] T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness”, Proc. American Math. Soc., 136:5 (2008), 1861–1869 | DOI
[34] T. Suzuki, “A new type of fixed point theorem in metric spaces”, Nonlinear Anal., 71 (2009), 5313–5317 | DOI