A Suzuki type fixed point theorem for a hybrid pair of maps in partial Hausdorff metric spaces
Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 93-101
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we introduce the notion of $(\theta, L)$ generalized weak contraction for a hybrid pair of mappings in a partial metric space by using partial Hausdorff metric. The main result of the paper generalizes the main theorem of H. Aydi et al. [6] .
@article{EMJ_2014_5_3_a5,
author = {K. P. R. Rao and K. R. K. Rao},
title = {A {Suzuki} type fixed point theorem for a hybrid pair of maps in partial {Hausdorff} metric spaces},
journal = {Eurasian mathematical journal},
pages = {93--101},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a5/}
}
TY - JOUR AU - K. P. R. Rao AU - K. R. K. Rao TI - A Suzuki type fixed point theorem for a hybrid pair of maps in partial Hausdorff metric spaces JO - Eurasian mathematical journal PY - 2014 SP - 93 EP - 101 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a5/ LA - en ID - EMJ_2014_5_3_a5 ER -
K. P. R. Rao; K. R. K. Rao. A Suzuki type fixed point theorem for a hybrid pair of maps in partial Hausdorff metric spaces. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 93-101. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a5/