Tricomi problem for an elliptic-hyperbolic equation of the second kind
Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 80-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Unique solvability of the Triсomi problem for an elliptic-hyperbolic equation of the second kind is proved with the help of the representation of the generalized solution to a hyperbolic equation with strong degeneration.
@article{EMJ_2014_5_3_a4,
     author = {N. K. Mamadaliev},
     title = {Tricomi problem for an elliptic-hyperbolic equation of the second kind},
     journal = {Eurasian mathematical journal},
     pages = {80--92},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a4/}
}
TY  - JOUR
AU  - N. K. Mamadaliev
TI  - Tricomi problem for an elliptic-hyperbolic equation of the second kind
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 80
EP  - 92
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a4/
LA  - en
ID  - EMJ_2014_5_3_a4
ER  - 
%0 Journal Article
%A N. K. Mamadaliev
%T Tricomi problem for an elliptic-hyperbolic equation of the second kind
%J Eurasian mathematical journal
%D 2014
%P 80-92
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a4/
%G en
%F EMJ_2014_5_3_a4
N. K. Mamadaliev. Tricomi problem for an elliptic-hyperbolic equation of the second kind. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 80-92. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a4/

[1] A. V. Bitsadze, “Linear mixed-type partial differential equations”, Proc. of the III All-Union Mathematical Congress, v. 3, Acad. Sci. USSR Publishers, M., 1956, 36–42

[2] A. V. Bitsadze, “On the common problem of mixed type”, Dokladw Ac. Sci. USSR. Matematika, 78:4 (1951), 621–624

[3] Pergamon Press, New York, 1964

[4] V. A. Eleev, “About some problems of Cauchy problem type with shift for one degenerate hyperbolic equation”, Differential equations, 12:1 (1976), 46–58

[5] F. I. Frankl, “About the Cauchy problem for elliptic-hyperbolic equation of mixed type with initial data on the transitional line”, Izvestiya Ac. Sci. USSR. Matematika, 8 (1944), 195–224

[6] S. Gellerstedt, “Sur une equation lineaire aux derivees partielles de type mixet”, Arkiv. Math., Astr., Physics, 25A:29 (1937), 1–23

[7] S. Gellerstedt, “Quelques problems mixtes pour l'equation $y^mz_{xx}+z_{yy}=0$”, Arkiv. Math., Astr., Physics, 1938, no. 3, 1–32

[8] G. Helwig, “Uber partielle Differentialgleichungen zweiter Ordnung von gemischten Typus”, Math. Zeitschrift, 61 (1954), 26–46 | DOI

[9] I. L. Karol, “On a boundary value problem for the mixed elliptic-hyperbolic equation”, Dokladw Ac. Sci. USSR. Matematika, 88:2 (1953), 197–200

[10] N. K. Mamadaliev, “Representation of a solution to a modified Cauchy problem”, Siberian Math. J., 41:5 (2000), 1087–1097 | DOI

[11] N. K. Mamadaliev, “Non-local problems for parabolic-hyperbolic equation”, Uzbek Math. J., 5 (1991), 37–44

[12] O. A. Oleinik, “On elliptic type equations degenerating on the boundary of a domain”, Dokladw Ac. Sci. USSR. Matematika, 87:6 (1952), 885–888

[13] L. Ya. Okunev, Higher algebra, Uchpedgiz, M., 1958

[14] M. H. Rrotter, “New boundary value problems for the wave equation and equations of mixed type”, J. Rational Mech. and Analysis, 3:4 (1954), 435–446

[15] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series. Special Functions, Nauka, M., 1983

[16] M. M. Smirnov, Equations of mixed type, Nauka, M., 1970

[17] S. A. Tersenov, “To the theory of hyperbolic equations with the data on the line of degeneration type”, Siberian Math. J., 2:6 (1961), 913–935