On the spectrum of a~nonlinear operator associated with calculation of the norm of a~linear vector-functional
Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 132-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit formula is presented for the norm if $1\le p\le\infty$ and for the quasi-norm if $0$ of a linear vector-functional $L\colon H\to l_p$ on a Hilbert space $H$ and the set of all extremal elements is described. All eigenvalues and eigenvectors of a nonlinear homogeneous operator entering the corresponding Euler's equation, are written out explicitly.
@article{EMJ_2014_5_2_a6,
     author = {V. I. Burenkov and T. V. Tararykova},
     title = {On the spectrum of a~nonlinear operator associated with calculation of the norm of a~linear vector-functional},
     journal = {Eurasian mathematical journal},
     pages = {132--138},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a6/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - T. V. Tararykova
TI  - On the spectrum of a~nonlinear operator associated with calculation of the norm of a~linear vector-functional
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 132
EP  - 138
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a6/
LA  - en
ID  - EMJ_2014_5_2_a6
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A T. V. Tararykova
%T On the spectrum of a~nonlinear operator associated with calculation of the norm of a~linear vector-functional
%J Eurasian mathematical journal
%D 2014
%P 132-138
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a6/
%G en
%F EMJ_2014_5_2_a6
V. I. Burenkov; T. V. Tararykova. On the spectrum of a~nonlinear operator associated with calculation of the norm of a~linear vector-functional. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 132-138. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a6/

[1] Russian Acad. Sci. Dokl. Math., 45:3 (1992), 572–577 | MR | Zbl

[2] Proc. Steklov Inst. Math., 204, no. 3, American Mathematical Society, Providence, Rhode Island, 1994, 57–67 | MR | Zbl

[3] E. Kreyszig, Introductory functional analysis with applications, John Wiley Sons, New York–Santa Barbara–London–Sydney–Toronto, 1989 | MR | Zbl