On the spectrum of a~nonlinear operator associated with calculation of the norm of a~linear vector-functional
Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 132-138
Voir la notice de l'article provenant de la source Math-Net.Ru
An explicit formula is presented for the norm if $1\le p\le\infty$ and for the quasi-norm if $0$ of a linear vector-functional $L\colon H\to l_p$ on a Hilbert space $H$ and the set of all extremal elements is described. All eigenvalues and eigenvectors of a nonlinear homogeneous operator entering the corresponding Euler's equation, are written out explicitly.
@article{EMJ_2014_5_2_a6,
author = {V. I. Burenkov and T. V. Tararykova},
title = {On the spectrum of a~nonlinear operator associated with calculation of the norm of a~linear vector-functional},
journal = {Eurasian mathematical journal},
pages = {132--138},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a6/}
}
TY - JOUR AU - V. I. Burenkov AU - T. V. Tararykova TI - On the spectrum of a~nonlinear operator associated with calculation of the norm of a~linear vector-functional JO - Eurasian mathematical journal PY - 2014 SP - 132 EP - 138 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a6/ LA - en ID - EMJ_2014_5_2_a6 ER -
%0 Journal Article %A V. I. Burenkov %A T. V. Tararykova %T On the spectrum of a~nonlinear operator associated with calculation of the norm of a~linear vector-functional %J Eurasian mathematical journal %D 2014 %P 132-138 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a6/ %G en %F EMJ_2014_5_2_a6
V. I. Burenkov; T. V. Tararykova. On the spectrum of a~nonlinear operator associated with calculation of the norm of a~linear vector-functional. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 132-138. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a6/