Mathematical model of multifractal dynamics and global warming
Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 52-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the variations of global temperature that have occurred in the period from 1860 up to now are analyzed on the basis of the concept of multifractal dynamics. The multifractal curve describing dynamics of global temperature for this period of time has the following values of fractal dimensions over 5 periods lasting for 30–31 years each, accordingly: $D_1=1,140$; $D_2=1,166$; $D_3=1,141$; $D_4=1,203$; $D_5=1,183$. Such relatively small values of fractal dimensions are indicative of essentially determined character of processes responsible for variations of global temperature. Our predictive estimates provide $0,5^\circ$ C increase in global temperature by 2072, thereby confirming maintenance of the tendency of global warming in the near future.
@article{EMJ_2014_5_2_a2,
     author = {A. N. Kudinov and O. I. Krylova and V. P. Tsvetkov and I. V. Tsvetkov},
     title = {Mathematical model of multifractal dynamics and global warming},
     journal = {Eurasian mathematical journal},
     pages = {52--59},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a2/}
}
TY  - JOUR
AU  - A. N. Kudinov
AU  - O. I. Krylova
AU  - V. P. Tsvetkov
AU  - I. V. Tsvetkov
TI  - Mathematical model of multifractal dynamics and global warming
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 52
EP  - 59
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a2/
LA  - en
ID  - EMJ_2014_5_2_a2
ER  - 
%0 Journal Article
%A A. N. Kudinov
%A O. I. Krylova
%A V. P. Tsvetkov
%A I. V. Tsvetkov
%T Mathematical model of multifractal dynamics and global warming
%J Eurasian mathematical journal
%D 2014
%P 52-59
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a2/
%G en
%F EMJ_2014_5_2_a2
A. N. Kudinov; O. I. Krylova; V. P. Tsvetkov; I. V. Tsvetkov. Mathematical model of multifractal dynamics and global warming. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 52-59. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a2/

[1] P. Brohan, J. J. Kennedy, I. Haris, S. F. B. Tett, P. D. Jones, “Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850”, J. Geophysical Research, 111 (2006), D12106 | DOI

[2] P. D. Jones, T. M. I. Wigley, “Global warning trends”, Scientific American, 263:2 (1990), 84–91 | DOI

[3] A. N. Kudinov, V. P. Tsvetkov, I. V. Tsvetkov, “Catastrophes in the multi-fractal dynamics of socialeconomic Systems”, Russian Journal of Mathematical Physics, 8:2 (2011), 149–155 | DOI | MR

[4] A. N. Kudinov, V. P. Tsvetkov, I. V. Tsvetkov, “Currency crisis and the bifurcation phenomena within fractal model”, Finansy i kredit, 2009, no. 46(326), 5–9 (in Russian)

[5] B. Mandelbrot, The fractal geometry of nature, San Francisco, 1982 | MR