Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_1_a4, author = {M. R. Langarshoev}, title = {Sharp inequality of {Jackson--Stechkin} type and widths of functional classes in the space $L_2$}, journal = {Eurasian mathematical journal}, pages = {122--134}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/} }
TY - JOUR AU - M. R. Langarshoev TI - Sharp inequality of Jackson--Stechkin type and widths of functional classes in the space $L_2$ JO - Eurasian mathematical journal PY - 2014 SP - 122 EP - 134 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/ LA - en ID - EMJ_2014_5_1_a4 ER -
M. R. Langarshoev. Sharp inequality of Jackson--Stechkin type and widths of functional classes in the space $L_2$. Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 122-134. http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/
[1] N. I. Chernykh, “On the best approximation of periodic functions by trigonometric polynomials in $L_2$”, Mathem. Notes, 2:5 (1967), 513–522 (in Russian) | MR
[2] V. I. Ivanov, O. I. Smirnov, Jackson's constants and Young's constants in the spaces $L_p$, Tula State University, Tula, 1995 (in Russian)
[3] A. A. Ligun, “Some inequalities for the best approximations and the moduli of continuity in the space $L_2$”, Mathem. Notes, 24:6 (1978), 785–792 (in Russian) | MR | Zbl
[4] G. G. Magaril-Ilyaev, V. M. Tikhomirov, “The exact value of the widths of functional classes in $L_2$”, Dokl. Akad. Nauk, 344:5 (1995), 583–585 (in Russian) | MR | Zbl
[5] A. Pinkus, $n$-Widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl
[6] M. Sh. Shabozov, “Widths of certain classes of periodic differentiable functions in the space $L_2[0,2\pi]$”, Mathem. Notes, 87:4 (2010), 616–623 (in Russian) | MR | Zbl
[7] M. Sh. Shabozov, G. A. Yusupov, “Best polynomial approximations in $L_2$ of certain classes of $2\pi$-periodic functions and exact values of their widths”, Mathem. Notes, 90:5 (2011), 764–775 (in Russian) | MR | Zbl
[8] M. Sh. Shabozov, S. B. Vakarchuk, “On the best approximation of periodic functions by trigonometric polynomials and exact values of widths of functional classes in $L_2$”, Analysis Mathematica, 38 (2012), 147–159 | DOI | MR | Zbl
[9] V. V. Shalaev, “On widths in $L_2$ of classes of differentiable functions defined with the help of moduli of continuity of higher orders”, Ukrainian Math. J., 43:1 (1991), 125–129 (in Russian) | DOI | MR | Zbl
[10] L. V. Taikov, “Inequalities containing best approximations and modulus of continuity of functions in $L_2$”, Mathem. Notes, 20:3 (1976), 433–438 (in Russian) | MR | Zbl
[11] V. M. Tikhomirov, Certain topics of the theory of approximations, Moscow State University, M., 1976 (in Russian)
[12] S. B. Vakarchuk, “Sharp constants in inequalities of Jackson type and exact values of widths of functional classes in $L_2$”, Mathem. Notes, 78:5 (2005), 792–796 (in Russian) | MR | Zbl
[13] S. B. Vakarchuk, “Inequality of Jackson type and widths of classes of functions in $L_2$”, Mathem. Notes, 80:1 (2006), 11–18 (in Russian) | DOI | MR | Zbl
[14] S. B. Vakarchuk, V. I. Zabutnaya, “Widths of function classes from $L_2$ and exact constants in Jackson type inequalities”, East Journal on Approximations, 14:4 (2008), 411–421 | MR | Zbl
[15] S. B. Vakarchuk, V. I. Zabutnaya, “Sharp inequality of Jackson–Stechkin type in $L_2$ and widths of functional classes”, Mathem. Notes, 86:3 (2009), 328–336 (in Russian) | MR | Zbl
[16] G. A. Yusupov, “Best polynomial approximation and widths of certain classes of functions in the space $L_2$”, Eurasian Math. J., 4:3 (2013), 120–126