Sharp inequality of Jackson--Stechkin type and widths of functional classes in the space $L_2$
Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 122-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

For classes of differentiable periodic functions, defined by means of generalized moduli of continuity $\Omega_m(f,t)$, satisfying the condition $$ \left(\int_0^h\Omega_m^{2/m}(f^{(r)},t)dt\right)\leqslant\Phi(h), $$ where $m\in\mathbb{N}$, $r\in\mathbb{Z}_+$, $h>0$ and $\Phi$ is a given majorant, under certain restrictions on the majorant, the exact values of various $n$-widths in the space $L_2$ are calculated.
@article{EMJ_2014_5_1_a4,
     author = {M. R. Langarshoev},
     title = {Sharp inequality of {Jackson--Stechkin} type and widths of functional classes in the space $L_2$},
     journal = {Eurasian mathematical journal},
     pages = {122--134},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/}
}
TY  - JOUR
AU  - M. R. Langarshoev
TI  - Sharp inequality of Jackson--Stechkin type and widths of functional classes in the space $L_2$
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 122
EP  - 134
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/
LA  - en
ID  - EMJ_2014_5_1_a4
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%T Sharp inequality of Jackson--Stechkin type and widths of functional classes in the space $L_2$
%J Eurasian mathematical journal
%D 2014
%P 122-134
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/
%G en
%F EMJ_2014_5_1_a4
M. R. Langarshoev. Sharp inequality of Jackson--Stechkin type and widths of functional classes in the space $L_2$. Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 122-134. http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/

[1] N. I. Chernykh, “On the best approximation of periodic functions by trigonometric polynomials in $L_2$”, Mathem. Notes, 2:5 (1967), 513–522 (in Russian) | MR

[2] V. I. Ivanov, O. I. Smirnov, Jackson's constants and Young's constants in the spaces $L_p$, Tula State University, Tula, 1995 (in Russian)

[3] A. A. Ligun, “Some inequalities for the best approximations and the moduli of continuity in the space $L_2$”, Mathem. Notes, 24:6 (1978), 785–792 (in Russian) | MR | Zbl

[4] G. G. Magaril-Ilyaev, V. M. Tikhomirov, “The exact value of the widths of functional classes in $L_2$”, Dokl. Akad. Nauk, 344:5 (1995), 583–585 (in Russian) | MR | Zbl

[5] A. Pinkus, $n$-Widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl

[6] M. Sh. Shabozov, “Widths of certain classes of periodic differentiable functions in the space $L_2[0,2\pi]$”, Mathem. Notes, 87:4 (2010), 616–623 (in Russian) | MR | Zbl

[7] M. Sh. Shabozov, G. A. Yusupov, “Best polynomial approximations in $L_2$ of certain classes of $2\pi$-periodic functions and exact values of their widths”, Mathem. Notes, 90:5 (2011), 764–775 (in Russian) | MR | Zbl

[8] M. Sh. Shabozov, S. B. Vakarchuk, “On the best approximation of periodic functions by trigonometric polynomials and exact values of widths of functional classes in $L_2$”, Analysis Mathematica, 38 (2012), 147–159 | DOI | MR | Zbl

[9] V. V. Shalaev, “On widths in $L_2$ of classes of differentiable functions defined with the help of moduli of continuity of higher orders”, Ukrainian Math. J., 43:1 (1991), 125–129 (in Russian) | DOI | MR | Zbl

[10] L. V. Taikov, “Inequalities containing best approximations and modulus of continuity of functions in $L_2$”, Mathem. Notes, 20:3 (1976), 433–438 (in Russian) | MR | Zbl

[11] V. M. Tikhomirov, Certain topics of the theory of approximations, Moscow State University, M., 1976 (in Russian)

[12] S. B. Vakarchuk, “Sharp constants in inequalities of Jackson type and exact values of widths of functional classes in $L_2$”, Mathem. Notes, 78:5 (2005), 792–796 (in Russian) | MR | Zbl

[13] S. B. Vakarchuk, “Inequality of Jackson type and widths of classes of functions in $L_2$”, Mathem. Notes, 80:1 (2006), 11–18 (in Russian) | DOI | MR | Zbl

[14] S. B. Vakarchuk, V. I. Zabutnaya, “Widths of function classes from $L_2$ and exact constants in Jackson type inequalities”, East Journal on Approximations, 14:4 (2008), 411–421 | MR | Zbl

[15] S. B. Vakarchuk, V. I. Zabutnaya, “Sharp inequality of Jackson–Stechkin type in $L_2$ and widths of functional classes”, Mathem. Notes, 86:3 (2009), 328–336 (in Russian) | MR | Zbl

[16] G. A. Yusupov, “Best polynomial approximation and widths of certain classes of functions in the space $L_2$”, Eurasian Math. J., 4:3 (2013), 120–126