Sharp inequality of Jackson--Stechkin type and widths of functional classes in the space $L_2$
Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 122-134

Voir la notice de l'article provenant de la source Math-Net.Ru

For classes of differentiable periodic functions, defined by means of generalized moduli of continuity $\Omega_m(f,t)$, satisfying the condition $$ \left(\int_0^h\Omega_m^{2/m}(f^{(r)},t)dt\right)\leqslant\Phi(h), $$ where $m\in\mathbb{N}$, $r\in\mathbb{Z}_+$, $h>0$ and $\Phi$ is a given majorant, under certain restrictions on the majorant, the exact values of various $n$-widths in the space $L_2$ are calculated.
@article{EMJ_2014_5_1_a4,
     author = {M. R. Langarshoev},
     title = {Sharp inequality of {Jackson--Stechkin} type and widths of functional classes in the space $L_2$},
     journal = {Eurasian mathematical journal},
     pages = {122--134},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/}
}
TY  - JOUR
AU  - M. R. Langarshoev
TI  - Sharp inequality of Jackson--Stechkin type and widths of functional classes in the space $L_2$
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 122
EP  - 134
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/
LA  - en
ID  - EMJ_2014_5_1_a4
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%T Sharp inequality of Jackson--Stechkin type and widths of functional classes in the space $L_2$
%J Eurasian mathematical journal
%D 2014
%P 122-134
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/
%G en
%F EMJ_2014_5_1_a4
M. R. Langarshoev. Sharp inequality of Jackson--Stechkin type and widths of functional classes in the space $L_2$. Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 122-134. http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a4/