Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_4_a4, author = {N. D. Kopachevsky and E. V. Syomkina}, title = {Linear {Volterra} integro-differential second-order equations unresolved with respect to the highest derivative}, journal = {Eurasian mathematical journal}, pages = {64--87}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/} }
TY - JOUR AU - N. D. Kopachevsky AU - E. V. Syomkina TI - Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative JO - Eurasian mathematical journal PY - 2013 SP - 64 EP - 87 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/ LA - en ID - EMJ_2013_4_4_a4 ER -
%0 Journal Article %A N. D. Kopachevsky %A E. V. Syomkina %T Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative %J Eurasian mathematical journal %D 2013 %P 64-87 %V 4 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/ %G en %F EMJ_2013_4_4_a4
N. D. Kopachevsky; E. V. Syomkina. Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative. Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 64-87. http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/
[1] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Textbook, 2nd edition, Lan, Saint-Petersburg, 2010, 464 pp. (in Russian)
[2] N. D. Kopachevsky, Volterra integro-differential equations in Hilbert space, Special lecture course, FLP “Bondarenko O. A.”, Simferopol, 2012, 152 pp. (in Russian)
[3] S. G. Krein, Linear differential equations in Banah space, Nauka, Moscow, 1967, 464 pp. (in Russian) | MR
[4] S. G. Krein (editor), Functional analysis, Nauka, Moscow, 1972, 544 pp. (in Russian) | MR
[5] M. Sowa, “Cosine operator functions”, Rozpr. Math., 49 (1996), 1–47 | MR
[6] V. V. Vlasov, D. A. Medvedev, N. A. Rautian, “Functional differential equations in Sobolev space and their spectrum analysis”, Matematika, Sovremennye problemy matematiki i mekhaniki, 8, no. 1, Moscow State University, Moscow, 2011, 8–306 (in Russian)
[7] V. Volterra, Theory of functionals, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR
[8] S. Ya. Yakubov, Linear differential operator equations and their applications, Elm, Baku, 1985, 220 pp. (in Russian)