Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative
Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 64-87

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for Volterra integro-differential secondorder linear equations which describe an evolution of dynamical systems with infinite numbers of degrees of freedom taking into account relaxation effects. Existence theorems for strong solutions for three classes of complete integro-differential second-order equations are obtained.
@article{EMJ_2013_4_4_a4,
     author = {N. D. Kopachevsky and E. V. Syomkina},
     title = {Linear {Volterra} integro-differential second-order equations unresolved with respect to the highest derivative},
     journal = {Eurasian mathematical journal},
     pages = {64--87},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/}
}
TY  - JOUR
AU  - N. D. Kopachevsky
AU  - E. V. Syomkina
TI  - Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 64
EP  - 87
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/
LA  - en
ID  - EMJ_2013_4_4_a4
ER  - 
%0 Journal Article
%A N. D. Kopachevsky
%A E. V. Syomkina
%T Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative
%J Eurasian mathematical journal
%D 2013
%P 64-87
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/
%G en
%F EMJ_2013_4_4_a4
N. D. Kopachevsky; E. V. Syomkina. Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative. Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 64-87. http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/