Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative
Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 64-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for Volterra integro-differential secondorder linear equations which describe an evolution of dynamical systems with infinite numbers of degrees of freedom taking into account relaxation effects. Existence theorems for strong solutions for three classes of complete integro-differential second-order equations are obtained.
@article{EMJ_2013_4_4_a4,
     author = {N. D. Kopachevsky and E. V. Syomkina},
     title = {Linear {Volterra} integro-differential second-order equations unresolved with respect to the highest derivative},
     journal = {Eurasian mathematical journal},
     pages = {64--87},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/}
}
TY  - JOUR
AU  - N. D. Kopachevsky
AU  - E. V. Syomkina
TI  - Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 64
EP  - 87
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/
LA  - en
ID  - EMJ_2013_4_4_a4
ER  - 
%0 Journal Article
%A N. D. Kopachevsky
%A E. V. Syomkina
%T Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative
%J Eurasian mathematical journal
%D 2013
%P 64-87
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/
%G en
%F EMJ_2013_4_4_a4
N. D. Kopachevsky; E. V. Syomkina. Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative. Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 64-87. http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a4/

[1] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Textbook, 2nd edition, Lan, Saint-Petersburg, 2010, 464 pp. (in Russian)

[2] N. D. Kopachevsky, Volterra integro-differential equations in Hilbert space, Special lecture course, FLP “Bondarenko O. A.”, Simferopol, 2012, 152 pp. (in Russian)

[3] S. G. Krein, Linear differential equations in Banah space, Nauka, Moscow, 1967, 464 pp. (in Russian) | MR

[4] S. G. Krein (editor), Functional analysis, Nauka, Moscow, 1972, 544 pp. (in Russian) | MR

[5] M. Sowa, “Cosine operator functions”, Rozpr. Math., 49 (1996), 1–47 | MR

[6] V. V. Vlasov, D. A. Medvedev, N. A. Rautian, “Functional differential equations in Sobolev space and their spectrum analysis”, Matematika, Sovremennye problemy matematiki i mekhaniki, 8, no. 1, Moscow State University, Moscow, 2011, 8–306 (in Russian)

[7] V. Volterra, Theory of functionals, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR

[8] S. Ya. Yakubov, Linear differential operator equations and their applications, Elm, Baku, 1985, 220 pp. (in Russian)