On increase at infinity of almost hypoelliptic polynomials
Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 30-42

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an almost hypoelliptic polynomial $P(\xi)=P(\xi_1,\dots,\xi_n)$ is increasing at infinity, i. e. $|P(\xi)|\to\infty$ as $|\xi|\to\infty$, if and only if the number $n$ of variables of $P$ is invariant with respect to any linear nondegenerate transformation $T\colon R^n\to R^n$.
@article{EMJ_2013_4_4_a2,
     author = {H. G. Ghazaryan and V. N. Margaryan},
     title = {On increase at infinity of almost hypoelliptic polynomials},
     journal = {Eurasian mathematical journal},
     pages = {30--42},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a2/}
}
TY  - JOUR
AU  - H. G. Ghazaryan
AU  - V. N. Margaryan
TI  - On increase at infinity of almost hypoelliptic polynomials
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 30
EP  - 42
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a2/
LA  - en
ID  - EMJ_2013_4_4_a2
ER  - 
%0 Journal Article
%A H. G. Ghazaryan
%A V. N. Margaryan
%T On increase at infinity of almost hypoelliptic polynomials
%J Eurasian mathematical journal
%D 2013
%P 30-42
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a2/
%G en
%F EMJ_2013_4_4_a2
H. G. Ghazaryan; V. N. Margaryan. On increase at infinity of almost hypoelliptic polynomials. Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 30-42. http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a2/