On increase at infinity of almost hypoelliptic polynomials
Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 30-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an almost hypoelliptic polynomial $P(\xi)=P(\xi_1,\dots,\xi_n)$ is increasing at infinity, i. e. $|P(\xi)|\to\infty$ as $|\xi|\to\infty$, if and only if the number $n$ of variables of $P$ is invariant with respect to any linear nondegenerate transformation $T\colon R^n\to R^n$.
@article{EMJ_2013_4_4_a2,
     author = {H. G. Ghazaryan and V. N. Margaryan},
     title = {On increase at infinity of almost hypoelliptic polynomials},
     journal = {Eurasian mathematical journal},
     pages = {30--42},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a2/}
}
TY  - JOUR
AU  - H. G. Ghazaryan
AU  - V. N. Margaryan
TI  - On increase at infinity of almost hypoelliptic polynomials
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 30
EP  - 42
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a2/
LA  - en
ID  - EMJ_2013_4_4_a2
ER  - 
%0 Journal Article
%A H. G. Ghazaryan
%A V. N. Margaryan
%T On increase at infinity of almost hypoelliptic polynomials
%J Eurasian mathematical journal
%D 2013
%P 30-42
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a2/
%G en
%F EMJ_2013_4_4_a2
H. G. Ghazaryan; V. N. Margaryan. On increase at infinity of almost hypoelliptic polynomials. Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 30-42. http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a2/

[1] L. Cattabriga, “Su una classe di polinomi ipoellittici”, Rend. Sem. Mat. Univ. Padova, 36 (1966), 285–309 | MR | Zbl

[2] J. Friberg, “Multi-quasielliptic polynomials”, Annali della seuola Normale Sup. di Pisa, ser. 3, 21 (1967), 239–260 | MR | Zbl

[3] L. Gårding, “Linear hyperbolic partial differential equations with constant coefficients”, Acta Math., 85 (1951), 1–62 | DOI | MR

[4] H. G. Ghazaryan, V. N. Margaryan, “Behaviour at infinity of polynomials of two variables”, Topics in Analysis and its Applications, NATO Science Publications, 147, Kluwer Academic Press, 2004, 163–190 | MR | Zbl

[5] H. G. Ghazaryan, “Addition of lower order terms preserving almost hypoellipticity of polynomals”, Eurasian Math. J., 4:3 (2013), 32–52

[6] L. Hörmander, Analysis of linear partial differential operators, Springer-Verlag, 1983 | Zbl

[7] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 36, (2001):2 (2002), 44–55 | MR

[8] G. G. Kazaryan, “On almost hypoelliptic polynomials”, Doklady Ross. Acad. Nauk, 398:6 (2004), 701–703 | MR

[9] V. N. Margaryan, G. G. Tonoyan, “On a class of almost hypoelliptic polynomials”, Izv. NAN Armenii Math., 45:5 (2010), 1–22 (in Russian) | MR

[10] Proc. Steklov Inst. Math., 91, 1967, 61–82 | MR | Zbl | Zbl

[11] E. Pehkonen, “Ein hipoelliptisches Dirichlet problem”, Comm. Physico Math., 48:3 (1978), 131–143 | MR | Zbl

[12] I. G. Petrovskii, “On Cauchy's problem for systems of linear partial differential equations”, Selected Works, Nauka, Moscow, 1986, 34–97 (in Russian)

[13] B. Pini, “Osservazoni sulla ipoellitticità”, Boll. Univ. Mat. Ital. ser 3, 18:4 (1963), 420–433 | MR

[14] Math USSR Sb., 4:3 (1968), 369–384 | DOI | MR | Zbl