Schur test for the Hardy operator
Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 17-29

Voir la notice de l'article provenant de la source Math-Net.Ru

For monotonic functions necessary and sufficient conditions are investigated ensuring the equivalence of a function and of an integral containing that function. Factorization theorems (Schur tests) are proved for the classical Hardy operator and its adjoint in Lebesque spaces with monotonic weights.
@article{EMJ_2013_4_4_a1,
     author = {E. I. Berezhnoi},
     title = {Schur test for the {Hardy} operator},
     journal = {Eurasian mathematical journal},
     pages = {17--29},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a1/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - Schur test for the Hardy operator
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 17
EP  - 29
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a1/
LA  - en
ID  - EMJ_2013_4_4_a1
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T Schur test for the Hardy operator
%J Eurasian mathematical journal
%D 2013
%P 17-29
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a1/
%G en
%F EMJ_2013_4_4_a1
E. I. Berezhnoi. Schur test for the Hardy operator. Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 17-29. http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a1/