Schur test for the Hardy operator
Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 17-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

For monotonic functions necessary and sufficient conditions are investigated ensuring the equivalence of a function and of an integral containing that function. Factorization theorems (Schur tests) are proved for the classical Hardy operator and its adjoint in Lebesque spaces with monotonic weights.
@article{EMJ_2013_4_4_a1,
     author = {E. I. Berezhnoi},
     title = {Schur test for the {Hardy} operator},
     journal = {Eurasian mathematical journal},
     pages = {17--29},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a1/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - Schur test for the Hardy operator
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 17
EP  - 29
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a1/
LA  - en
ID  - EMJ_2013_4_4_a1
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T Schur test for the Hardy operator
%J Eurasian mathematical journal
%D 2013
%P 17-29
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a1/
%G en
%F EMJ_2013_4_4_a1
E. I. Berezhnoi. Schur test for the Hardy operator. Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 17-29. http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a1/

[1] E. I. Berezhnoi, “Interpolation of positive operators in space $\varphi(X_0,X_1)$”, Qualitative and approximate methods in studies of operator equations, Yaroslavl State University, Yaroslavl, 1981, 3–12 (in Russian) | MR

[2] E. I. Berezhnoi, “Theorems on the representation of spaces and Schur's lemma”, Doklady of Russian Academy of Sciences. Mathematics, 344:6 (1995), 727–730 (in Russian) | MR

[3] E. I. Berezhnoi, L. Maligranda, “On extrapolation operators and the limits of applicability of the test Schur”, Doklady of Russian Academy of Sciences. Mathematics, 393:5 (2003), 1–4 (in Russian) | MR

[4] M. Christ, “Weighted norm inequalities and Schur's lemma”, Studia Math., 78:3 (1984), 309–319 | MR | Zbl

[5] J. Garnia-Cuerva, J. Rubio de Francia, Weighted norm inequalities and related topics, North Holland, Amsterdam, 1985 | MR

[6] V. B. Korotkov, Integral operators, Nauka, Novosibirsk, 1983 (in Russian) | MR | Zbl

[7] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Nauka, Moscow, 1978 (in Russian) | MR

[8] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific, 2003 | MR | Zbl

[9] Maz'ya V. G., Sobolev spaces, Leningrad State University, Leningrad, 1985 (in Russian) | MR | Zbl

[10] J. L. Rubio de Francia, “A new technigue in the theory of $A_p$-weights”, Topics in modern harmonic analysis, Roma, 1983, 571–579 | MR | Zbl

[11] P. Szeptycki, “Notes on integral transformations”, Dissertationes Math. (Rozprawy Mat.), 231 (1984), 1–48 | MR