Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_4_a0, author = {R. A. Bandaliev}, title = {On {Hardy-type} inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0<p(x)<1$}, journal = {Eurasian mathematical journal}, pages = {5--16}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a0/} }
R. A. Bandaliev. On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0
[1] Math. Notes, 84:3 (2008), 303–313 | DOI | DOI | MR | Zbl
[2] R. A. Bandaliev, “The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces”, Czechoslovak Math. J., 60:2 (2010), 327–337 | DOI | MR | Zbl
[3] R. A. Bandaliev, “The boundedness of multidimensional Hardy operator in the weighted variable Lebesgue spaces”, Lithuanian Math. J., 3:50 (2010), 249–259 | DOI | MR | Zbl
[4] R. A. Bandaliev, “Embedding between variable exponent Lebesgue spaces with measures”, Azerbaijan Journal of Math., 2:1 (2012), 111–117 | MR
[5] J. Bergh, V. I. Burenkov, L.-E. Persson, “On some sharp reversed Hölder and Hardy–type inequalities”, Math. Nachr., 169 (1994), 19–29 | DOI | MR | Zbl
[6] Proc. Steklov Inst. Math., 194, 1993, 59–63 | MR | Zbl
[7] V. I. Burenkov, Function spaces. Main integral inequalities related to $L_p$-spaces, Peoples' Friendship University, Moscow, 1989 (in Russian)
[8] V. I. Burenkov, A. Senouci, T. V. Tararykova, “Hardy-type inequality for $0
1$ and hypodecreasing functions”, Eurasian Math. J., 1:3 (2010), 27–42 | MR | Zbl[9] D. Cruz.-Uribe, F. I. Mamedov, “On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces”, Revista Math. Comp., 25:2 (2012), 335–367 | DOI | MR | Zbl
[10] L. Diening, P. Harjulehto, P. Hästö, M. Ru̇žička, Lebesgue and Sobolev spaces with variable exponents, Springer Lecture Notes, 2017, Springer-Verlag, Berlin, 2011 | MR | Zbl
[11] O. Kováčik, J. Rákosník, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:116 (1991), 592–618 | MR | Zbl
[12] V. G. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin, 1985 | MR | Zbl
[13] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin–Heidelberg–New York, 1983 | MR | Zbl
[14] W. Orlicz, “Über konjugierte exponentenfolgen”, Studia Math., 3 (1931), 200–212
[15] K. R. Rajagopal, M. Ru̇žička, “Mathematical modeling of electrorheological materials”, Cont. Mech. and Termodyn., 13 (2001), 59–78 | DOI | Zbl
[16] S. G. Samko, “Differentiation and integration of variable order and the spaces $L_p(x)$”, Proc. Inter. Conf. “Operator theory for complex and hypercomplex analysis” (Mexico, 1994), Contemp. Math., 212, 1998, 203–219 | DOI | MR | Zbl
[17] A. Senouci, T. V. Tararykova, “Hardy-type inequality for $0
1$”, Evraziiskii Matematicheskii Zhurnal, 2007, no. 2, 112–116[18] Math. Notes, 26:4 (1979), 796–806 | DOI | MR | Zbl
[19] Q. H. Zhang, “Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems”, Nonlinear Analysis TMA, 70:1 (2009), 305–316 | DOI | MR | Zbl