On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0$
Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 5-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper two-weighted inequalities for the Hardy operator and its dual operator acting from one weighted variable Lebesgue space to another weighted variable Lebesgue space are proved. In particular, sufficient conditions on the weights ensuring the validity of two-weighted inequalities of Hardy type are found. Also an embedding theorem for weighted variable Lebesgue spaces is proved.
@article{EMJ_2013_4_4_a0,
     author = {R. A. Bandaliev},
     title = {On {Hardy-type} inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0<p(x)<1$},
     journal = {Eurasian mathematical journal},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a0/}
}
TY  - JOUR
AU  - R. A. Bandaliev
TI  - On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 5
EP  - 16
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a0/
LA  - en
ID  - EMJ_2013_4_4_a0
ER  - 
%0 Journal Article
%A R. A. Bandaliev
%T On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0
%J Eurasian mathematical journal
%D 2013
%P 5-16
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a0/
%G en
%F EMJ_2013_4_4_a0
R. A. Bandaliev. On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0
                  
                

[1] Math. Notes, 84:3 (2008), 303–313 | DOI | DOI | MR | Zbl

[2] R. A. Bandaliev, “The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces”, Czechoslovak Math. J., 60:2 (2010), 327–337 | DOI | MR | Zbl

[3] R. A. Bandaliev, “The boundedness of multidimensional Hardy operator in the weighted variable Lebesgue spaces”, Lithuanian Math. J., 3:50 (2010), 249–259 | DOI | MR | Zbl

[4] R. A. Bandaliev, “Embedding between variable exponent Lebesgue spaces with measures”, Azerbaijan Journal of Math., 2:1 (2012), 111–117 | MR

[5] J. Bergh, V. I. Burenkov, L.-E. Persson, “On some sharp reversed Hölder and Hardy–type inequalities”, Math. Nachr., 169 (1994), 19–29 | DOI | MR | Zbl

[6] Proc. Steklov Inst. Math., 194, 1993, 59–63 | MR | Zbl

[7] V. I. Burenkov, Function spaces. Main integral inequalities related to $L_p$-spaces, Peoples' Friendship University, Moscow, 1989 (in Russian)

[8] V. I. Burenkov, A. Senouci, T. V. Tararykova, “Hardy-type inequality for $0

1$ and hypodecreasing functions”, Eurasian Math. J., 1:3 (2010), 27–42 | MR | Zbl

[9] D. Cruz.-Uribe, F. I. Mamedov, “On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces”, Revista Math. Comp., 25:2 (2012), 335–367 | DOI | MR | Zbl

[10] L. Diening, P. Harjulehto, P. Hästö, M. Ru̇žička, Lebesgue and Sobolev spaces with variable exponents, Springer Lecture Notes, 2017, Springer-Verlag, Berlin, 2011 | MR | Zbl

[11] O. Kováčik, J. Rákosník, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:116 (1991), 592–618 | MR | Zbl

[12] V. G. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin, 1985 | MR | Zbl

[13] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin–Heidelberg–New York, 1983 | MR | Zbl

[14] W. Orlicz, “Über konjugierte exponentenfolgen”, Studia Math., 3 (1931), 200–212

[15] K. R. Rajagopal, M. Ru̇žička, “Mathematical modeling of electrorheological materials”, Cont. Mech. and Termodyn., 13 (2001), 59–78 | DOI | Zbl

[16] S. G. Samko, “Differentiation and integration of variable order and the spaces $L_p(x)$”, Proc. Inter. Conf. “Operator theory for complex and hypercomplex analysis” (Mexico, 1994), Contemp. Math., 212, 1998, 203–219 | DOI | MR | Zbl

[17] A. Senouci, T. V. Tararykova, “Hardy-type inequality for $0

1$”, Evraziiskii Matematicheskii Zhurnal, 2007, no. 2, 112–116

[18] Math. Notes, 26:4 (1979), 796–806 | DOI | MR | Zbl

[19] Q. H. Zhang, “Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems”, Nonlinear Analysis TMA, 70:1 (2009), 305–316 | DOI | MR | Zbl

[20] Math. USSR, Izv., 29:1 (1987), 33–66 | DOI | MR | Zbl