New examples of Pompeiu functions
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 63-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

For given sequence of real numbers $\{x_k\}^\infty_1\subset I:=[0,1]$ the explicitly defined function $\varphi\colon I\to I$ is constructed such that $\varphi(x_k)=0$, $k\in\mathbb N$, $\varphi(x)>0$ a.e. and all $x\in I$ are Lebesgue points of $\varphi(\cdot)$. So its primitive $f(\cdot)$ is an everywhere differentiable strictly increasing function with $f'(x_k)=0$, $k\in\mathbb N$.
@article{EMJ_2013_4_3_a5,
     author = {G. A. Kalyabin},
     title = {New examples of {Pompeiu} functions},
     journal = {Eurasian mathematical journal},
     pages = {63--69},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a5/}
}
TY  - JOUR
AU  - G. A. Kalyabin
TI  - New examples of Pompeiu functions
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 63
EP  - 69
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a5/
LA  - en
ID  - EMJ_2013_4_3_a5
ER  - 
%0 Journal Article
%A G. A. Kalyabin
%T New examples of Pompeiu functions
%J Eurasian mathematical journal
%D 2013
%P 63-69
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a5/
%G en
%F EMJ_2013_4_3_a5
G. A. Kalyabin. New examples of Pompeiu functions. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 63-69. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a5/

[1] A. Bruckner, Differentiation of Real Functions, Springer Verlag, 1978 | MR | Zbl

[2] D. Pompeiu, “Sur les fonctions dérivées”, Math. Ann., 63 (1906), 326–332 | DOI | MR

[3] A. Denjoy, “Sur les fonctions dérivées sommable”, Bull. Soc. Math. France, 43 (1915), 161–248 | MR | Zbl

[4] B. M. Makarov, M. G. Goluzina, A. A. Lodkin, A. N. Podkorytov, Selected problems in real analysis, Saint Petersburg, 2004 (in Russian) | MR

[5] I. P. Natanson, Theory of functions of real variable, Nauka, Moscow, 1974 (in Russian) | MR