Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_3_a4, author = {N. S. Imanbaev and M. A. Sadybekov}, title = {On spectral properties of a~periodic problem with an integral perturbation of the boundary condition}, journal = {Eurasian mathematical journal}, pages = {53--62}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a4/} }
TY - JOUR AU - N. S. Imanbaev AU - M. A. Sadybekov TI - On spectral properties of a~periodic problem with an integral perturbation of the boundary condition JO - Eurasian mathematical journal PY - 2013 SP - 53 EP - 62 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a4/ LA - en ID - EMJ_2013_4_3_a4 ER -
%0 Journal Article %A N. S. Imanbaev %A M. A. Sadybekov %T On spectral properties of a~periodic problem with an integral perturbation of the boundary condition %J Eurasian mathematical journal %D 2013 %P 53-62 %V 4 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a4/ %G en %F EMJ_2013_4_3_a4
N. S. Imanbaev; M. A. Sadybekov. On spectral properties of a~periodic problem with an integral perturbation of the boundary condition. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 53-62. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a4/
[1] S. G. Krein, Funktsional'nyi analiz (Functional analysis), Nauka, Moscow, 1972 | MR
[2] V. A. Il'in, “On the relationship between the form of the boundary conditions and the basis property and property of equiconvergence with the trigonometric series of expansions in root functions of a nonself-adjoint differential operator”, Differ. Uravn., 30:9 (1994), 1516–1529 | MR | Zbl
[3] G. M. Kesel'man, “On the unconditional convergence of eigenfunction expansions of certain differential operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 2, 82–93 | MR | Zbl
[4] A. S. Makin, “On a nonlocal perturbation of a periodic Eigenvalue Problem”, Differ. Uravn., 42:4 (2006), 560–562 | MR | Zbl
[5] A. S. Makin, “On spectral decompositions corresponding to non-self-adjoint Sturm–Liouville operators”, Doklady Mathematics, 73:1 (2006), 15–18 | DOI | MR | Zbl
[6] A. S. Makin, “Convergence of expansions in the root functions of periodic boundary value problems”, Doklady Mathematics, 73:1 (2006), 71–76 | DOI | Zbl
[7] V. P. Mikhailov, “On Riesz basis in $L_2(0,1)$”, Dokl. Akad. Nauk SSSR, 144:5 (1962), 981–984 | MR
[8] M. A. Naimark, Linear differential operators, Nauka, Moskau, 1969 (in Russian) | MR | Zbl
[9] M. A. Sadybekov, N. S. Imanbaev, “On the basis property of root functions of a periodic problem with an integral perturbation of the boundary condition”, Differential Equations, 48:6 (2012), 896–900 | DOI | Zbl
[10] A. A. Shkalikov, “Basis property of eigenfunctions of ordinary differential operators with integral boundary conditions”, Vestnik Moskov. Univ. Ser. I Mat. Mech., 1982, no. 6, 12–21 | MR | Zbl
[11] A. A. Shkalikov, “On the basis problem of the eigenfunctions of an ordinary differential operator”, Uspekhi Mat. Nauk, 34:5 (1979), 235–236 | MR | Zbl
[12] V. A. Tkachenko, “Spectral analysis of a nonselfadjoint Hill operator”, Sov. Math. Dokl., 45:1 (1992), 78–82 | MR | Zbl
[13] O. A. Veliev, A. A. Shkalikov, “On the Riesz basis property of eigen- and associated functions of periodic and anti-periodic Sturm–Liouville problems”, Mat. Zametki, 85:5 (2009), 671–686 | DOI | MR | Zbl