On spectral properties of a~periodic problem with an integral perturbation of the boundary condition
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 53-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the spectral problem for the Schrödinger equation with an integral perturbation in the periodic boundary conditions. The unperturbed problem is assumed to have the system of eigenfunctions and associated functions forming a Riesz basis in $L_2(0,1)$. We construct the characteristic determinant of the spectral problem. We show that the basis property of the system of root functions of the problem may fail to be satisfied under an arbitrarily small change in the kernel of the integral perturbation.
@article{EMJ_2013_4_3_a4,
     author = {N. S. Imanbaev and M. A. Sadybekov},
     title = {On spectral properties of a~periodic problem with an integral perturbation of the boundary condition},
     journal = {Eurasian mathematical journal},
     pages = {53--62},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a4/}
}
TY  - JOUR
AU  - N. S. Imanbaev
AU  - M. A. Sadybekov
TI  - On spectral properties of a~periodic problem with an integral perturbation of the boundary condition
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 53
EP  - 62
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a4/
LA  - en
ID  - EMJ_2013_4_3_a4
ER  - 
%0 Journal Article
%A N. S. Imanbaev
%A M. A. Sadybekov
%T On spectral properties of a~periodic problem with an integral perturbation of the boundary condition
%J Eurasian mathematical journal
%D 2013
%P 53-62
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a4/
%G en
%F EMJ_2013_4_3_a4
N. S. Imanbaev; M. A. Sadybekov. On spectral properties of a~periodic problem with an integral perturbation of the boundary condition. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 53-62. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a4/

[1] S. G. Krein, Funktsional'nyi analiz (Functional analysis), Nauka, Moscow, 1972 | MR

[2] V. A. Il'in, “On the relationship between the form of the boundary conditions and the basis property and property of equiconvergence with the trigonometric series of expansions in root functions of a nonself-adjoint differential operator”, Differ. Uravn., 30:9 (1994), 1516–1529 | MR | Zbl

[3] G. M. Kesel'man, “On the unconditional convergence of eigenfunction expansions of certain differential operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 2, 82–93 | MR | Zbl

[4] A. S. Makin, “On a nonlocal perturbation of a periodic Eigenvalue Problem”, Differ. Uravn., 42:4 (2006), 560–562 | MR | Zbl

[5] A. S. Makin, “On spectral decompositions corresponding to non-self-adjoint Sturm–Liouville operators”, Doklady Mathematics, 73:1 (2006), 15–18 | DOI | MR | Zbl

[6] A. S. Makin, “Convergence of expansions in the root functions of periodic boundary value problems”, Doklady Mathematics, 73:1 (2006), 71–76 | DOI | Zbl

[7] V. P. Mikhailov, “On Riesz basis in $L_2(0,1)$”, Dokl. Akad. Nauk SSSR, 144:5 (1962), 981–984 | MR

[8] M. A. Naimark, Linear differential operators, Nauka, Moskau, 1969 (in Russian) | MR | Zbl

[9] M. A. Sadybekov, N. S. Imanbaev, “On the basis property of root functions of a periodic problem with an integral perturbation of the boundary condition”, Differential Equations, 48:6 (2012), 896–900 | DOI | Zbl

[10] A. A. Shkalikov, “Basis property of eigenfunctions of ordinary differential operators with integral boundary conditions”, Vestnik Moskov. Univ. Ser. I Mat. Mech., 1982, no. 6, 12–21 | MR | Zbl

[11] A. A. Shkalikov, “On the basis problem of the eigenfunctions of an ordinary differential operator”, Uspekhi Mat. Nauk, 34:5 (1979), 235–236 | MR | Zbl

[12] V. A. Tkachenko, “Spectral analysis of a nonselfadjoint Hill operator”, Sov. Math. Dokl., 45:1 (1992), 78–82 | MR | Zbl

[13] O. A. Veliev, A. A. Shkalikov, “On the Riesz basis property of eigen- and associated functions of periodic and anti-periodic Sturm–Liouville problems”, Mat. Zametki, 85:5 (2009), 671–686 | DOI | MR | Zbl