@article{EMJ_2013_4_3_a10,
author = {N. Azzouz and B. Halim and A. Senouci},
title = {An inequality for the weighted {Hardy} operator for $0<p<1$},
journal = {Eurasian mathematical journal},
pages = {127--131},
year = {2013},
volume = {4},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a10/}
}
N. Azzouz; B. Halim; A. Senouci. An inequality for the weighted Hardy operator for $0
[1] J. Bergh, V. Burenkov, L.-E. Persson, “Best constants in reversed Hardy's inequalities for quasi monotone functions”, Acta Sci. Math. (Szeged), 59:1–2 (1994), 221–239 | MR | Zbl
[2] J. Bergh, V. Burenkov, L.-E. Persson, “On some sharp reversed H?older and Hardy-type inequalities”, Math. Nachr., 169 (1994), 19–29 | DOI | MR | Zbl
[3] V. I. Burenkov, “On the exact constant in the Hardy inequality with $0
1$ for monotone functions”, Proc. Steklov Inst. Mat., 194, 1993, 59–63 | MR | Zbl[4] V. I. Burenkov, A. Senouci, T. V. Tararykova, “Hardy-type inequality for $0
1$ and hypodecreasing functions”, Eurasian Math. J., 1:3 (2010), 27–42 | MR | Zbl[5] V. I. Burenkov, Function spaces. Main integral inequalities related to $L_p$-spaces, Peoples' Friendship University, Moscow, 1989, 96 pp. (in Russian)
[6] N. Kaiblinger, L. Maligranda, L.-E. Persson, “Norms in weighted $L_2$-spaces and Hardy operators”, Function Spaces, Lecture Notes in Pure and Appl. Math., 213, Dekker, New York, 2000, 205–216 | MR | Zbl
[7] A. Senouci, T. V. Tararykova, “Hardy-type inequality with $0
1$”, Evraziiskii Matematicheskii Zhurnal, 2 (2007), 112–116