An inequality for the weighted Hardy operator for $0$
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 127-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Hardy-type inequality for $0$ with sharp constant is established in [7], [4]. The aim of this work is to extend this inequality for the weighted Hardy operator.
@article{EMJ_2013_4_3_a10,
     author = {N. Azzouz and B. Halim and A. Senouci},
     title = {An inequality for the weighted {Hardy} operator for $0<p<1$},
     journal = {Eurasian mathematical journal},
     pages = {127--131},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a10/}
}
TY  - JOUR
AU  - N. Azzouz
AU  - B. Halim
AU  - A. Senouci
TI  - An inequality for the weighted Hardy operator for $0
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 127
EP  - 131
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a10/
LA  - en
ID  - EMJ_2013_4_3_a10
ER  - 
%0 Journal Article
%A N. Azzouz
%A B. Halim
%A A. Senouci
%T An inequality for the weighted Hardy operator for $0
%J Eurasian mathematical journal
%D 2013
%P 127-131
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a10/
%G en
%F EMJ_2013_4_3_a10
N. Azzouz; B. Halim; A. Senouci. An inequality for the weighted Hardy operator for $0
                  
                

[1] J. Bergh, V. Burenkov, L.-E. Persson, “Best constants in reversed Hardy's inequalities for quasi monotone functions”, Acta Sci. Math. (Szeged), 59:1–2 (1994), 221–239 | MR | Zbl

[2] J. Bergh, V. Burenkov, L.-E. Persson, “On some sharp reversed H?older and Hardy-type inequalities”, Math. Nachr., 169 (1994), 19–29 | DOI | MR | Zbl

[3] V. I. Burenkov, “On the exact constant in the Hardy inequality with $0

1$ for monotone functions”, Proc. Steklov Inst. Mat., 194, 1993, 59–63 | MR | Zbl

[4] V. I. Burenkov, A. Senouci, T. V. Tararykova, “Hardy-type inequality for $0

1$ and hypodecreasing functions”, Eurasian Math. J., 1:3 (2010), 27–42 | MR | Zbl

[5] V. I. Burenkov, Function spaces. Main integral inequalities related to $L_p$-spaces, Peoples' Friendship University, Moscow, 1989, 96 pp. (in Russian)

[6] N. Kaiblinger, L. Maligranda, L.-E. Persson, “Norms in weighted $L_2$-spaces and Hardy operators”, Function Spaces, Lecture Notes in Pure and Appl. Math., 213, Dekker, New York, 2000, 205–216 | MR | Zbl

[7] A. Senouci, T. V. Tararykova, “Hardy-type inequality with $0

1$”, Evraziiskii Matematicheskii Zhurnal, 2 (2007), 112–116