@article{EMJ_2013_4_2_a7,
author = {M. I. Dyachenko and E. D. Nursultanov and A. M. Zhantakbayeva},
title = {Hardy{\textendash}Littlewood type theorems},
journal = {Eurasian mathematical journal},
pages = {140--143},
year = {2013},
volume = {4},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a7/}
}
M. I. Dyachenko; E. D. Nursultanov; A. M. Zhantakbayeva. Hardy–Littlewood type theorems. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 140-143. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a7/
[1] M. Dyachenko, S. Tikhonov, “Integrability and continuity of functions represented by trigonometric series: coefficients criteria”, Studia Math., 193:3 (2009), 285–306 | DOI | MR | Zbl
[2] L. Leindler, “On the uniform convergence and boundedness of a certain class of sine series”, Anal. Math., 27 (2001), 279–285 | DOI | MR | Zbl
[3] S. Tikhonov, “Best approximation and moduli of smoothness: computation and equivalence theorems”, J. Approx. Theory, 153 (2008), 19–39 | DOI | MR | Zbl
[4] S. Tikhonov, “Trigonometric series of Nikol'skii classes”, Acta Math. Hungar., 114 (2007), 61–78 | DOI | MR | Zbl
[5] S. Tikhonov, “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326 (2007), 721–735 | DOI | MR | Zbl
[6] D. S. Yu, P. Zhou, S. P. Zhou, “On $L_p$ integrability and convergence of trigonometric series”, Studia Math., 182 (2007), 215–226 | DOI | MR | Zbl