On the boundary behaviour of functions in the Djrbashyan classes $U_\alpha$ and~$A_\alpha$
Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 57-63

Voir la notice de l'article provenant de la source Math-Net.Ru

Nevanlinna factorization theorem was essentially extended in a series of papers by M. M. Djrbashyan for classes $A_\alpha$ and $U_\alpha$ introduced by him, see [2], [3]. In this paper we pay particular attention to non vanishing functions $f\in A_\alpha(-1\alpha0)$ and show that for any $\theta$ except at most a set of zero $(1+\alpha)$-capacity we have $|\ln|f(z)||=o((1-|z|)^{1+\alpha})$ as $z\to e^{i\theta}$.
@article{EMJ_2013_4_2_a3,
     author = {R. V. Dallakyan},
     title = {On the boundary behaviour of functions in the {Djrbashyan} classes $U_\alpha$ and~$A_\alpha$},
     journal = {Eurasian mathematical journal},
     pages = {57--63},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a3/}
}
TY  - JOUR
AU  - R. V. Dallakyan
TI  - On the boundary behaviour of functions in the Djrbashyan classes $U_\alpha$ and~$A_\alpha$
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 57
EP  - 63
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a3/
LA  - en
ID  - EMJ_2013_4_2_a3
ER  - 
%0 Journal Article
%A R. V. Dallakyan
%T On the boundary behaviour of functions in the Djrbashyan classes $U_\alpha$ and~$A_\alpha$
%J Eurasian mathematical journal
%D 2013
%P 57-63
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a3/
%G en
%F EMJ_2013_4_2_a3
R. V. Dallakyan. On the boundary behaviour of functions in the Djrbashyan classes $U_\alpha$ and~$A_\alpha$. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 57-63. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a3/