Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_1_a1, author = {A. Akbulut and V. S. Guliev and Sh. A. Muradova}, title = {On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary {Morrey-type} spaces to anisotropic {Morrey-type} spaces}, journal = {Eurasian mathematical journal}, pages = {7--20}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a1/} }
TY - JOUR AU - A. Akbulut AU - V. S. Guliev AU - Sh. A. Muradova TI - On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces JO - Eurasian mathematical journal PY - 2013 SP - 7 EP - 20 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a1/ LA - en ID - EMJ_2013_4_1_a1 ER -
%0 Journal Article %A A. Akbulut %A V. S. Guliev %A Sh. A. Muradova %T On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces %J Eurasian mathematical journal %D 2013 %P 7-20 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a1/ %G en %F EMJ_2013_4_1_a1
A. Akbulut; V. S. Guliev; Sh. A. Muradova. On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 7-20. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a1/
[1] A. Akbulut, I. Ekincioglu, A. Serbetci, T. Tararykova, “Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces”, Eurasian Mathematical Journal, 2:2 (2011), 5–30 | MR | Zbl
[2] O. V. Besov, V. P. Il'in, P. I. Lizorkin, “The $L_p$-estimates of a certain class of non-isotropically singular integrals”, Dokl. Akad. Nauk SSSR, 169 (1966), 1250–1253 (in Russian) | MR | Zbl
[3] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, I”, Eurasian Mathematical Journal, 3:3 (2012), 11–32 | MR | Zbl
[4] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, II”, Eurasian Mathematical Journal, 4:1 (2013), 21–45 | Zbl
[5] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl
[6] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces”, J. Comput. Appl. Math., 208:1 (2007), 280–301 | DOI | MR | Zbl
[7] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 17–32 | DOI | MR | Zbl
[8] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafayev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Potential Anal., 35:1 (2011), 67–87 | DOI | MR | Zbl
[9] E. B. Fabes, N. Rivère, “Singular integrals with mixed homogeneity”, Studia Math., 27 (1966), 19–38 | MR | Zbl
[10] V. D. Stepanov, “The weighted Hardy's inequalities for nonincreasing functions”, Trans. Amer. Math. Soc., 338 (1993), 173–186 | MR | Zbl