On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces
Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 7-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the boundedness of the anisotropic fractional maximal operator $M_\alpha^d$ from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces is reduced to the problem of boundedness of the dual Hardy operator in weighted $L_p$-spaces on the cone of non-negative non-increasing functions, which allows obtaining sharp sufficient conditions for the boundedness of $M_\alpha^d$.
@article{EMJ_2013_4_1_a1,
     author = {A. Akbulut and V. S. Guliev and Sh. A. Muradova},
     title = {On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary {Morrey-type} spaces to anisotropic {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a1/}
}
TY  - JOUR
AU  - A. Akbulut
AU  - V. S. Guliev
AU  - Sh. A. Muradova
TI  - On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 7
EP  - 20
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a1/
LA  - en
ID  - EMJ_2013_4_1_a1
ER  - 
%0 Journal Article
%A A. Akbulut
%A V. S. Guliev
%A Sh. A. Muradova
%T On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces
%J Eurasian mathematical journal
%D 2013
%P 7-20
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a1/
%G en
%F EMJ_2013_4_1_a1
A. Akbulut; V. S. Guliev; Sh. A. Muradova. On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 7-20. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a1/

[1] A. Akbulut, I. Ekincioglu, A. Serbetci, T. Tararykova, “Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces”, Eurasian Mathematical Journal, 2:2 (2011), 5–30 | MR | Zbl

[2] O. V. Besov, V. P. Il'in, P. I. Lizorkin, “The $L_p$-estimates of a certain class of non-isotropically singular integrals”, Dokl. Akad. Nauk SSSR, 169 (1966), 1250–1253 (in Russian) | MR | Zbl

[3] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, I”, Eurasian Mathematical Journal, 3:3 (2012), 11–32 | MR | Zbl

[4] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, II”, Eurasian Mathematical Journal, 4:1 (2013), 21–45 | Zbl

[5] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl

[6] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces”, J. Comput. Appl. Math., 208:1 (2007), 280–301 | DOI | MR | Zbl

[7] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 17–32 | DOI | MR | Zbl

[8] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafayev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Potential Anal., 35:1 (2011), 67–87 | DOI | MR | Zbl

[9] E. B. Fabes, N. Rivère, “Singular integrals with mixed homogeneity”, Studia Math., 27 (1966), 19–38 | MR | Zbl

[10] V. D. Stepanov, “The weighted Hardy's inequalities for nonincreasing functions”, Trans. Amer. Math. Soc., 338 (1993), 173–186 | MR | Zbl