Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_4_a9, author = {Zh. A. Taspaganbetova}, title = {Weighted estimate for a~class of matrices on the cone of monotone sequences}, journal = {Eurasian mathematical journal}, pages = {137--146}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a9/} }
Zh. A. Taspaganbetova. Weighted estimate for a~class of matrices on the cone of monotone sequences. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 137-146. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a9/
[1] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy Inequality. About its History and Some Related Results, Vydavatelský Servis, Plzeň, 2007 | MR | Zbl
[2] R. Oinarov, S. Kh. Shalgynbaeva, “Weighted Hardy inequalities on the cone of monotone sequences”, Izvestiya NAN RK, serial Phys.-Mat., 1998, no. 1, 33–42 (in Russian) | MR
[3] R. Oinarov, L.-E. Persson, A. Temirkhanova, “Weighted inequalities for a class of matrix operators: the case $p\le q$”, Math. Inequal. Appl., 12:4 (2009), 891–903 | MR | Zbl
[4] C. A. Okpoti, L.-E. Persson, A. Wedestig, “Scales of weight characterizations for the discrete Hardy and Carleman type inequalities”, Proc. Conf. “Function spaces, Differential operators and Nonlinear Analysis”, FSDONA 2004 (Milovy, May 28 – Jun 2, 2004), Math. Inst. Acad. Sci. Chech Republic, Prague, 2005, 236–258
[5] S. Kh. Shalgynbaeva, “Weighted estimate for a class of matrices on the cone of monotone sequences”, Izvestiya NAN RK, serial Phys.-Mat., 1998, no. 5, 76–80 (in Russian) | MR
[6] A. Temirkhanova, “Weighted inequalities for a class of matrix operators: the case $1
\infty$”, Eurasian Mathematical Journal, 2008, no. 2, 117–127[7] A. Temirkhanova, Zh. Taspaganbetova, “Boundedness and compactness criteria of a certain class of matrix operators”, Mathematical Journal, 11:2(40) (2011), 73–85
[8] A. Temirkhanova, Zh. Taspaganbetova, “Criteria on Boundedness of matrix operators in weighted spaces of sequences and their applications”, Annals of Functional Analysis, 2:1 (2011), 114–127 | DOI | MR | Zbl