Generalized fractional Steffensen type inequalities
Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 81-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we state, prove and discuss new general Steffensen type inequality. As a special case of that general result we obtain fractional inequalities involving fractional integrals and derivatives of Riemann–Liouville, Canavati, Caputo, Hadamard and Erdelyi–Kóber types as well as fractional integrals of a function with respect to another function. Furthermore, we show that our main result covers much more general situations applying it to multidimensional settings. Finally we give mean value theorems for linear functionals related to obtained Steffensen type ineqalities.
@article{EMJ_2012_3_4_a6,
     author = {J. Pe\v{c}ari\'c and I. Peri\'c and K. Smoljak},
     title = {Generalized fractional {Steffensen} type inequalities},
     journal = {Eurasian mathematical journal},
     pages = {81--98},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a6/}
}
TY  - JOUR
AU  - J. Pečarić
AU  - I. Perić
AU  - K. Smoljak
TI  - Generalized fractional Steffensen type inequalities
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 81
EP  - 98
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a6/
LA  - en
ID  - EMJ_2012_3_4_a6
ER  - 
%0 Journal Article
%A J. Pečarić
%A I. Perić
%A K. Smoljak
%T Generalized fractional Steffensen type inequalities
%J Eurasian mathematical journal
%D 2012
%P 81-98
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a6/
%G en
%F EMJ_2012_3_4_a6
J. Pečarić; I. Perić; K. Smoljak. Generalized fractional Steffensen type inequalities. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 81-98. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a6/

[1] G. A. Anastassiou, Fractional Differentiation Inequalities, Springer Science+Businness Media, LLC, 2009 | MR | Zbl

[2] M. Andrić, J. Pečarić, I. Perić, “An multiple Opial type inequality due to Fink for Riemann–Liouville fractional derivatives”, J. Math. Inequal. (to appear)

[3] M. Andrić, J. Pečarić, I. Perić, “Improvements of composition rule for Canavati fractional derivative and applications to Opial-type inequalities”, Dynam. Systems Appl., 20 (2011), 383–394 | MR | Zbl

[4] D. E. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and Compact Integral Operators, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl

[5] A. M. Fink, “Steffensen type inequalities”, Rocky Mountain J. Math., 12:4 (1982), 785–793 | DOI | MR | Zbl

[6] G. D. Handley, J. J. Koliha, J. E. Pečarić, “Hilbert–Pachpatte type integral inequalities for fractional derivatives”, Fract. Calc. Appl. Anal., 4 (2001), 37–46 | MR | Zbl

[7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, New York–London, 2006 | MR | Zbl

[8] K. Krulić, J. Pečarić, K. Smoljak, “Fractional Steffensen type inequalities”, Complex Var. Elliptic Equ., 56:10–11 (2011), 975–990 | DOI | MR | Zbl

[9] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, San Diego, 1992 | MR

[10] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach. Sci. Publ., London–New–York, 1993 | MR | Zbl