Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_4_a3, author = {V. Gol'dshtein and A. Ukhlov}, title = {Brennan's conjecture for composition operators on {Sobolev} spaces}, journal = {Eurasian mathematical journal}, pages = {35--43}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a3/} }
V. Gol'dshtein; A. Ukhlov. Brennan's conjecture for composition operators on Sobolev spaces. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 35-43. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a3/
[1] D. Bertilsson, On Brennan's conjecture in conformal mapping, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden, 1999 | MR | Zbl
[2] J. Brennan, “The integrability of the derivative in conformal mapping”, J. London Math. Soc., 18 (1978), 261–272 | DOI | MR | Zbl
[3] V. Gol'dshtein, L. Gurov, “Applications of change of variables operators for exact embedding theorems”, Integral Equations Operator Theory, 19 (1994), 1–24 | DOI | MR | Zbl
[4] V. Gol'dshtein, L. Gurov, A. S. Romanov, “Homeomorphisms that induce monomorphisms of Sobolev spaces”, Israel J. Math., 91 (1995), 31–60 | DOI | MR | Zbl
[5] V. Gol'dshtein, A. S. Romanov, “On mappings preserving the Sobolev spaces”, Siberian. Math. J., 25:3 (1984), 55–61 | MR
[6] V. Gol'dshtein, A. Ukhlov, “Weighted Sobolev spaces and embedding theorems”, Trans. Amer. Math. Soc., 361 (2009), 3829–3850 | DOI | MR | Zbl
[7] V. Gol'dshtein, A. Ukhlov, “Sobolev homeomorphisms and composition operators”, Sobolev spaces in mathematics, Int. Math. Ser, 11, N.Y., 2010, 207–220 | DOI | MR | Zbl
[8] V. Gol'dshtein, A. Ukhlov, “About homeomorphisms that induce composition operators on Sobolev spaces”, Complex Variables and Elliptic Equations, 55 (2010), 833–945 | DOI | MR
[9] V. Gol'dshtein, V. V. Motreanu, A. Ukhlov, “Embeddings of weighted Sobolev spaces and degenerate Dirichlet problems involving the weighted $p$-Laplacian”, Complex Variables and Elliptic Equations, 56 (2011), 905–930 | DOI | MR | Zbl
[10] J. Heinonen, P. Koskela, “Sobolev mappings with integrable dilatation”, Arch. Rat. Mech. Anal., 125 (1993), 81–97 | DOI | MR | Zbl
[11] S. Hencl, P. Koskela, “Mappings of finite distortion: Composition operator”, Ann. Acad. Sci. Fenn. Math., 33 (2008), 65–80 | MR | Zbl
[12] T. Iwanec, V. Šverák, “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118 (1993), 181–188 | DOI | MR
[13] J. Kauhanen, P. Koskela, J. Malý, “Mappings of finite distortion: Discreteness and openness”, Arch. Rat. Mech. Anal., 160 (2001), 135–151 | DOI | MR | Zbl
[14] J. Kauhanen, P. Koskela, J. Malý, “Mappings of finite distortion: Condition N”, Michigan Math. J., 49 (2001), 169–181 | DOI | MR | Zbl
[15] J. Kauhanen, P. Koskela, J. Malý, “Mappings of finite distortion: Sharp Orlicz-conditions”, Rev. Mat. Iberoamericana, 19 (2003), 857–872 | DOI | MR | Zbl
[16] M. V. Keldych, “Sur l'approximation en moyenne quadratique des fonctions analytiques”, Matem. Sb., 5(47):2 (1939), 391–402 | MR | Zbl
[17] L. Kleprlik, “Mappings of finite signed distortion: Sobolev spaces and composition of mappings”, J. Math. Anal. Appl., 386 (2012), 870–881 | DOI | MR | Zbl
[18] V. G. Maz'ja, “Weak solutions of the Dirichlet and Neumann problems”, Trudy Moskov. Mat. Ob-va, 20, 1969, 137–172 | MR
[19] V. G. Mazya, V. P. Khavin, “On Approximation in the Mean by Analytic Functions”, Vestnik Leningrad. Univ., 1968, no. 13, 62–74 | MR | Zbl
[20] V. G. Maz'ya, T. O. Shaposhnikova, Multipliers in spaces of differentiable functions, Leningrad Univ. Press, Leningrad, 1986 | MR
[21] I. G. Markina, “A change of variable preserving the differential properties of functions”, Sib. Math. J., 31:3 (1990), 73–84 | MR | Zbl
[22] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “On $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 30 (2005), 49–69 | MR | Zbl
[23] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag, 1992 | MR | Zbl
[24] A. Ukhlov, “On mappings, which induced embeddings of Sobolev spaces”, Siberian Math. J., 34:1 (1993), 185–192 | MR | Zbl
[25] A. Ukhlov, S. K. Vodop'yanov, “Mappings with bounded $(P,Q)$-distortion on Carnot groups”, Bull. Sci. Math., 134 (2010), 605–634 | DOI | MR | Zbl
[26] A. Ukhlov, S. K. Vodop'yanov, “Mappings associated with weighted Sobolev spaces”, Complex analysis and dynamical systems, v. III, Contemporary Mathematics, 455, 2008, 369–382 | DOI | MR | Zbl
[27] S. K. Vodop'yanov, The Taylor formula and function spaces, Novosibirsk Univ. Press, Novosibirsk, 1988 | MR | Zbl
[28] S. K. Vodop'yanov, V. M. Gol'dshtein, “Structure isomorphisms of spaces $W^1_n$ and quasiconformal mappings”, Siberian. Math. J., 16 (1975), 224–246 | MR | Zbl
[29] S. K. Vodop'yanov, V. M. Gol'dshtein, “Functional characteristics of quasiisometric mappings”, Siberian. Math. J., 17:4 (1976), 768–773 | MR | Zbl
[30] S. K. Vodop'yanov, A. D. Ukhlov, “Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups”, Siberian Math. J., 39:4 (1998), 665–682 | DOI | MR | Zbl
[31] S. K. Vodop'yanov, A. D. Ukhlov, “Superposition operators in Sobolev spaces”, Russian Mathematics (Izvestiya VUZov), 46:10 (2002), 9–31 | MR | Zbl