Brennan's conjecture for composition operators on Sobolev spaces
Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 35-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that Brennan's conjecture is equivalent to the boundedness of composition operators on homogeneous Sobolev spaces, that are generated by conformal homeomorphisms of simply connected plane domains to the unit disc. A geometrical interpretation of Brennan's conjecture in terms of integrability of $p$-distortion is given.
@article{EMJ_2012_3_4_a3,
     author = {V. Gol'dshtein and A. Ukhlov},
     title = {Brennan's conjecture for composition operators on {Sobolev} spaces},
     journal = {Eurasian mathematical journal},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a3/}
}
TY  - JOUR
AU  - V. Gol'dshtein
AU  - A. Ukhlov
TI  - Brennan's conjecture for composition operators on Sobolev spaces
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 35
EP  - 43
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a3/
LA  - en
ID  - EMJ_2012_3_4_a3
ER  - 
%0 Journal Article
%A V. Gol'dshtein
%A A. Ukhlov
%T Brennan's conjecture for composition operators on Sobolev spaces
%J Eurasian mathematical journal
%D 2012
%P 35-43
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a3/
%G en
%F EMJ_2012_3_4_a3
V. Gol'dshtein; A. Ukhlov. Brennan's conjecture for composition operators on Sobolev spaces. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 35-43. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a3/

[1] D. Bertilsson, On Brennan's conjecture in conformal mapping, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden, 1999 | MR | Zbl

[2] J. Brennan, “The integrability of the derivative in conformal mapping”, J. London Math. Soc., 18 (1978), 261–272 | DOI | MR | Zbl

[3] V. Gol'dshtein, L. Gurov, “Applications of change of variables operators for exact embedding theorems”, Integral Equations Operator Theory, 19 (1994), 1–24 | DOI | MR | Zbl

[4] V. Gol'dshtein, L. Gurov, A. S. Romanov, “Homeomorphisms that induce monomorphisms of Sobolev spaces”, Israel J. Math., 91 (1995), 31–60 | DOI | MR | Zbl

[5] V. Gol'dshtein, A. S. Romanov, “On mappings preserving the Sobolev spaces”, Siberian. Math. J., 25:3 (1984), 55–61 | MR

[6] V. Gol'dshtein, A. Ukhlov, “Weighted Sobolev spaces and embedding theorems”, Trans. Amer. Math. Soc., 361 (2009), 3829–3850 | DOI | MR | Zbl

[7] V. Gol'dshtein, A. Ukhlov, “Sobolev homeomorphisms and composition operators”, Sobolev spaces in mathematics, Int. Math. Ser, 11, N.Y., 2010, 207–220 | DOI | MR | Zbl

[8] V. Gol'dshtein, A. Ukhlov, “About homeomorphisms that induce composition operators on Sobolev spaces”, Complex Variables and Elliptic Equations, 55 (2010), 833–945 | DOI | MR

[9] V. Gol'dshtein, V. V. Motreanu, A. Ukhlov, “Embeddings of weighted Sobolev spaces and degenerate Dirichlet problems involving the weighted $p$-Laplacian”, Complex Variables and Elliptic Equations, 56 (2011), 905–930 | DOI | MR | Zbl

[10] J. Heinonen, P. Koskela, “Sobolev mappings with integrable dilatation”, Arch. Rat. Mech. Anal., 125 (1993), 81–97 | DOI | MR | Zbl

[11] S. Hencl, P. Koskela, “Mappings of finite distortion: Composition operator”, Ann. Acad. Sci. Fenn. Math., 33 (2008), 65–80 | MR | Zbl

[12] T. Iwanec, V. Šverák, “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118 (1993), 181–188 | DOI | MR

[13] J. Kauhanen, P. Koskela, J. Malý, “Mappings of finite distortion: Discreteness and openness”, Arch. Rat. Mech. Anal., 160 (2001), 135–151 | DOI | MR | Zbl

[14] J. Kauhanen, P. Koskela, J. Malý, “Mappings of finite distortion: Condition N”, Michigan Math. J., 49 (2001), 169–181 | DOI | MR | Zbl

[15] J. Kauhanen, P. Koskela, J. Malý, “Mappings of finite distortion: Sharp Orlicz-conditions”, Rev. Mat. Iberoamericana, 19 (2003), 857–872 | DOI | MR | Zbl

[16] M. V. Keldych, “Sur l'approximation en moyenne quadratique des fonctions analytiques”, Matem. Sb., 5(47):2 (1939), 391–402 | MR | Zbl

[17] L. Kleprlik, “Mappings of finite signed distortion: Sobolev spaces and composition of mappings”, J. Math. Anal. Appl., 386 (2012), 870–881 | DOI | MR | Zbl

[18] V. G. Maz'ja, “Weak solutions of the Dirichlet and Neumann problems”, Trudy Moskov. Mat. Ob-va, 20, 1969, 137–172 | MR

[19] V. G. Mazya, V. P. Khavin, “On Approximation in the Mean by Analytic Functions”, Vestnik Leningrad. Univ., 1968, no. 13, 62–74 | MR | Zbl

[20] V. G. Maz'ya, T. O. Shaposhnikova, Multipliers in spaces of differentiable functions, Leningrad Univ. Press, Leningrad, 1986 | MR

[21] I. G. Markina, “A change of variable preserving the differential properties of functions”, Sib. Math. J., 31:3 (1990), 73–84 | MR | Zbl

[22] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “On $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 30 (2005), 49–69 | MR | Zbl

[23] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag, 1992 | MR | Zbl

[24] A. Ukhlov, “On mappings, which induced embeddings of Sobolev spaces”, Siberian Math. J., 34:1 (1993), 185–192 | MR | Zbl

[25] A. Ukhlov, S. K. Vodop'yanov, “Mappings with bounded $(P,Q)$-distortion on Carnot groups”, Bull. Sci. Math., 134 (2010), 605–634 | DOI | MR | Zbl

[26] A. Ukhlov, S. K. Vodop'yanov, “Mappings associated with weighted Sobolev spaces”, Complex analysis and dynamical systems, v. III, Contemporary Mathematics, 455, 2008, 369–382 | DOI | MR | Zbl

[27] S. K. Vodop'yanov, The Taylor formula and function spaces, Novosibirsk Univ. Press, Novosibirsk, 1988 | MR | Zbl

[28] S. K. Vodop'yanov, V. M. Gol'dshtein, “Structure isomorphisms of spaces $W^1_n$ and quasiconformal mappings”, Siberian. Math. J., 16 (1975), 224–246 | MR | Zbl

[29] S. K. Vodop'yanov, V. M. Gol'dshtein, “Functional characteristics of quasiisometric mappings”, Siberian. Math. J., 17:4 (1976), 768–773 | MR | Zbl

[30] S. K. Vodop'yanov, A. D. Ukhlov, “Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups”, Siberian Math. J., 39:4 (1998), 665–682 | DOI | MR | Zbl

[31] S. K. Vodop'yanov, A. D. Ukhlov, “Superposition operators in Sobolev spaces”, Russian Mathematics (Izvestiya VUZov), 46:10 (2002), 9–31 | MR | Zbl