On direct variational formulations for second order evolutionary equations
Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 23-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of direct variational formulations for a wide class of second order evolutionary equations is investigated.
@article{EMJ_2012_3_4_a2,
     author = {S. A. Budochkina and V. M. Savchin},
     title = {On direct variational formulations for second order evolutionary equations},
     journal = {Eurasian mathematical journal},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a2/}
}
TY  - JOUR
AU  - S. A. Budochkina
AU  - V. M. Savchin
TI  - On direct variational formulations for second order evolutionary equations
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 23
EP  - 34
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a2/
LA  - en
ID  - EMJ_2012_3_4_a2
ER  - 
%0 Journal Article
%A S. A. Budochkina
%A V. M. Savchin
%T On direct variational formulations for second order evolutionary equations
%J Eurasian mathematical journal
%D 2012
%P 23-34
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a2/
%G en
%F EMJ_2012_3_4_a2
S. A. Budochkina; V. M. Savchin. On direct variational formulations for second order evolutionary equations. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 23-34. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a2/

[1] V. Volterra, Leçons sur les fonctions de lignes, Gautier-Villars, Paris, 1913

[2] V. M. Savchin, Mathematical methods of mechanics of infinite-dimensional nonpotential systems, Peoples' Friendship University of Russia, Moscow, 1991 (in Russian) | MR

[3] S. A. Budochkina, Investigation of the motion of the Helmholtz systems with infinite number of degrees of freedom, PhD thesis, Moscow, 2005 (in Russian)

[4] S. A. Budochkina, V. M. Savchin, “On indirect variational formulations for operator equations”, Journal of Function Spaces and Applications, 5:3 (2007), 231–242 | DOI | MR