Generalizations of Borg's uniqueness theorem to the case of nonseparated boundary conditions
Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 10-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse Sturm–Liouville problems and generalizations of Borg's uniqueness theorem to the case of general boundary conditions are considered. Chudov, Marchenko, Krein, Karaseva and authors' generalizations are adduced. New generalizations of Borg, Marchenko and Karaseva's uniqueness theorem to the case of nonseparated boundary conditions are obtained. Appropriate examples and counterexample are given.
@article{EMJ_2012_3_4_a1,
     author = {A. M. Akhtyamov and V. A. Sadovnichy and Ya. T. Sultanaev},
     title = {Generalizations of {Borg's} uniqueness theorem to the case of nonseparated boundary conditions},
     journal = {Eurasian mathematical journal},
     pages = {10--22},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a1/}
}
TY  - JOUR
AU  - A. M. Akhtyamov
AU  - V. A. Sadovnichy
AU  - Ya. T. Sultanaev
TI  - Generalizations of Borg's uniqueness theorem to the case of nonseparated boundary conditions
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 10
EP  - 22
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a1/
LA  - en
ID  - EMJ_2012_3_4_a1
ER  - 
%0 Journal Article
%A A. M. Akhtyamov
%A V. A. Sadovnichy
%A Ya. T. Sultanaev
%T Generalizations of Borg's uniqueness theorem to the case of nonseparated boundary conditions
%J Eurasian mathematical journal
%D 2012
%P 10-22
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a1/
%G en
%F EMJ_2012_3_4_a1
A. M. Akhtyamov; V. A. Sadovnichy; Ya. T. Sultanaev. Generalizations of Borg's uniqueness theorem to the case of nonseparated boundary conditions. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 10-22. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a1/

[1] A. M. Akhtyamov, V. A. Sadovnichy, Ya. T. Sultanaev, “Inverse Problem for an Operator Pencil with Nonseparated Boundary Conditions”, Eurasian Mathematical Journal, 1:2 (2010), 5–16 | MR | Zbl

[2] V. A. Ambarzumijan, “Uber eine Frage der Eigenwerttheorie”, Zeitshrift fur Physik, 53 (1929), 690–695 | DOI

[3] A. L. Andrew, “Computing Sturm–Liouville Potentials from two Spectra”, Inverse Problems, 22 (2006), 2069–2081 | DOI | MR | Zbl

[4] P. A. Binding, H. Volkmer, “Inverse Oscillation Theory for Sturm–Liouville Problems with Nonseparated Boundary Conditions”, Inverse Probl., 23:1 (2007), 343–356 | DOI | MR

[5] P. A. Binding, B. A. Watson, “An Inverse Nodal Problem for Two–Parameter Sturm–Liouville Systems”, Inverse Problems, 25 (2009), 1–19 | DOI | MR

[6] G. Borg, “Eine Umkehrung der Sturm Liouvilleschen Eigenwertanfgabe. Bestimmung der Differentialgleichung durch die Eigenwarte”, Acta Math., 78:1 (1946), 1–96 | DOI | MR | Zbl

[7] L. A. Chudov, “The Inverse Sturm–Liouville Problem”, Mat. Sb. (N.S.), 25(67):3 (1949), 451–456 (in Russian) | MR | Zbl

[8] Siberian Math. J., 31:6 (1990), 910–918 | DOI | MR | Zbl

[9] N. J. Guliyev, “Inverse Eigenvalue Problems for Sturm–Liouville Equations with Spectral Parameter Linearly Contained in One of The Boundary Conditions”, Inverse Problems, 21 (2005), 1315–1330 | DOI | MR | Zbl

[10] Math. Sb., 186:5 (1995), 661–674 | DOI | MR | Zbl

[11] Math. Sb., 198:11 (2007), 1579–1598 | DOI | DOI | MR | Zbl

[12] A. Kammanee, C. Böckmann, “Boundary Value Method for Inverse Sturm–Liouville Problems”, Applied Mathematics and computation, 214 (2009), 342–352 | DOI | MR | Zbl

[13] B. E. Kanguzhin, Uniqueness Theorems for Spectral Analysis of Inverse Problems with Nonseparated Boundary Conditions, Dep. in VINITI, 1982, 73 pp. (in Russian)

[14] T. M. Karaseva, “On The Inverse Sturm–Liouville Problem for a Non-Hermitian Operator”, Mat. Sb. (N.S.), 32(74):2 (1953), 477–484 (in Russian) | MR | Zbl

[15] A. Kostenko, A. Sakhnovich, G. Tesch, “Inverse Eigenvalue Problems for Perturbed Spherical Schrödinger Operators”, Inverse Problems, 26:10 (2010), 1–14 | DOI | MR

[16] M. G. Krein, “Solution of the Inverse Sturm–Liouville Problem”, Dokl. Akad. Nauk SSSR, 76:1 (1951), 21–24 (in Russian) | MR

[17] M. G. Krein, “Determination of the Density of a Non-Homogeneous Symmetric Cord by Its Frequency Spectrum”, Dokl. Akad. Nauk SSSR (N.S.), 76:3 (1951), 345–348 (in Russian) | MR

[18] N. Levinson, “The Inverse Sturm–Liouville Problem”, Math. Tidsskr. Ser. B, 13 (1949), 25–30 | MR

[19] VNU Science Press, Utrecht, 1987 | MR | Zbl | Zbl

[20] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac Operators, Nauka, Moscow, 1988 | MR | Zbl

[21] Russian Mathematical Surveys, 19:2 (1964), 1–63 | DOI | MR | Zbl

[22] V. A. Marchenko, “Certain Problems In The Theory Of Second-Order Differential Operators”, Doklady Akad. Nauk SSSR, 72:3 (1950), 457–460 (in Russian) | MR | Zbl

[23] V. A. Marchenko, Spectral Theory of Sturm–Liouville Operators, Naukova Dumka, Kiev, 1972 (in Russian) | MR | Zbl

[24] Math. USSR Sb., 26:4 (1975), 493–554 | DOI | MR | Zbl

[25] Birkhäuser, Basel, 1986 | MR | Zbl

[26] Parts I, II, Ungar, New York, 1967, 1968 | MR | Zbl | Zbl

[27] L. Nizhnik, “Inverse Nonlocal Sturm–Liouville Problem”, Inverse Problems, 26 (2010), 1–9 | DOI | MR

[28] Math. USSR Sb., 59:1 (1988), 1–23 | DOI | MR | Zbl | Zbl

[29] O. A. Plaksina, “Inverse Problems of Spectral Analysis for Sturm–Liouville Operators with Nonseparated Boundary Conditions. II”, Math. Ussr. Sb., 136(178):1 (1989), 140–159 (in Russian) | MR | Zbl

[30] V. A. Sadovnichy, “Uniqueness of the Solution of The Inverse Problem for Second-Order Differential Equation with Nonseparated Boundary Conditions, Regularized Sums of Eigenvalues. Factorization of the Characteristic Determinant”, Dokl. Akad. Nauk SSSR, 206:2 (1972), 293–296 | MR

[31] V. A. Sadovnichy, B. E. Kanguzhin, “On a Connection Between the Spectrum of A Differential Operator with Symmetric Coefficients and Boundary Conditions”, Dokl. Akad. Nauk SSSR, 267:2 (1982), 310–313 (in Russian) | MR

[32] Doklady Mathematics, 60:1 (1999), 115–117 | MR

[33] Doklady Mathematical Sciences, 69:2 (2004), 105–107 | MR

[34] Doklady Mathematics, 74:3 (2006), 889–892 | DOI | MR

[35] Doklady Mathematics, 75:1 (2007), 20–22 | DOI | MR

[36] Doklady Mathematics, 79:2 (2009), 169–171 | DOI | MR

[37] V. A. Sadovnichy, Ya. T. Sultanaev, A. M. Akhtyamov, Inverse Sturm–Liouville Problems with Nonseparated Boundary Conditions, MSU, Moscow, 2009 (in Russian)

[38] Doklady Mathematics, 83:3 (2011), 302–305 | DOI | MR | MR

[39] L. A. Sakhnovich, “Inverse Problem for Differential Operators of Order $n>2$ with Analytic Coefficients”, Mat. Sb. (N.S.), 46(88):1 (1958), 61–76 (in Russian) | MR | Zbl

[40] Functional Analysis and Its Applications, 44:4 (2010), 270–285 | DOI | DOI | MR | Zbl

[41] Sov. Math. Dokl., 11 (1970), 582–586 | MR

[42] A. N. Tikhonov, “On Uniqueness of Solution of the Electroprospecting Problem”, Dokl. Akad. Nauk SSSR, 69:6 (1949), 797–800 (in Russian) | MR | Zbl

[43] Math. Notes, 18:3–4 (1975), 928–932 | DOI | MR | Zbl

[44] V. A. Yurko, “The Inverse Spectral Problems for Differential Operators with Nonseparated Boundary Conditions”, Journal of Mathematical Analysis and Applications, 250 (2000), 266–289 | DOI | MR | Zbl

[45] V. A. Yurko, Inverse Spectral Problems for Differential Operators and their Applications, Gordon and Breach, Amsterdam, 2000 | MR | Zbl