Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_3_a5, author = {M. A. Ragusa}, title = {Operators in {Morrey} type spaces and applications}, journal = {Eurasian mathematical journal}, pages = {94--109}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a5/} }
M. A. Ragusa. Operators in Morrey type spaces and applications. Eurasian mathematical journal, Tome 3 (2012) no. 3, pp. 94-109. http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a5/
[1] P. Acquistapace, “On BMO regularity for linear elliptic system”, Ann. Mat. Pura Appl. (4), 161 (1992), 231–269 | DOI | MR | Zbl
[2] M. Bramanti, M. C. Cerutti, M. Manfredini, “$L^p$ estimates for some ultraparabolic operators with discontinuous coefficients”, J. Math. Anal. Appl., 200 (1996), 332–354 | DOI | MR | Zbl
[3] S. Campanato, Sistemi ellittici in forma divergenza. Regolaritá all'finterno, Quaderni, Scuola Normale Superiore Pisa, Pisa, 1980 | MR | Zbl
[4] S. Campanato, “A maximum principle for non-linear elliptic systems: Boundary fundamental estimates”, Adv. Math., 66:3 (1987), 291–317 | DOI | MR | Zbl
[5] S. Campanato, “Elliptic systems with non-linearity $q$ greater or equal 2. Regularity of the solution of the Dirichlet problem”, Ann. Mat. Pura Appl., 147:4 (1987), 117–150 | DOI | MR | Zbl
[6] S. Chandrasekhar, “Stochastic problems in physics and astronomy”, Rew. Modern Phys., 15 (1943), 1–89 | DOI | MR | Zbl
[7] F. Chiarenza, M. Frasca, P. Longo, “Interior $W^{2,p}$ estimates for non-divergence elliptic equations with discontinuous coefficients”, Ricerche Mat., 40 (1991), 149–168 | MR | Zbl
[8] F. Chiarenza, M. Frasca, P. Longo, “$W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients”, Trans. Amer. Math. Soc., 336 (1993), 841–853 | MR | Zbl
[9] G. Da Prato, A. Lunardi, “On the Ornstein–Uhlemnbeck operator in spaces of continuous functions”, J. Funct. Anal., 131 (1995), 94–114 | DOI | MR | Zbl
[10] J. Daněček, E. Viszus, “$L^{2,\lambda}$-regularity for minima of variational integrals”, Boll. Un. Mat. Ital., 8:6 (2003), 39–48 | MR | Zbl
[11] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Studies, 105, Princeton University Press, 1983 | MR | Zbl
[12] M. Giaquinta, E. Giusti, “Partial regularity for the solution to nonlinear parabolic systems”, Ann. Mat. Pura Appl. (4), 97 (1973), 253–266 | DOI | MR | Zbl
[13] M. Giaquinta, E. Giusti, “Differentiability of minima of non-differentiables functionals”, Inv. Math., 72:2 (1983), 285–298 | DOI | MR | Zbl
[14] M. Giaquinta, E. Giusti, “The singular set of the minima of certain quadratic functionals”, Ann. Sc. Norm. Sup. Pisa (4), 11 (1984), 45–55 | MR | Zbl
[15] M. Giaquinta, P. Ivert, “Partial regularity for minima of variational inegrals”, Ank. für Math., 25:2 (1987), 221–229 | MR | Zbl
[16] M. Giaquinta, L. Modica, “Partial regularity of minimizers of quasiconvex integrals”, Ann. Inst. H. Poincaré Analyse nonlinéare, 3:3 (1986), 185–208 | MR | Zbl
[17] M. Giaquinta, L. Modica, “Regularity results for some classes of higher order non linear elliptic systems”, J. Reine Angew. Math., 311 (1979), 145–169 | MR | Zbl
[18] M. Giaquinta, L. Modica, “Remarks on the regularity of the minimizers of certain degenerate functionals”, Manuscripta Math., 57:1 (1986), 55–99 | DOI | MR | Zbl
[19] E. Giusti, “Regolarità parziale delle soluzioni di sistemi ellittici quasi lineari di ordine arbitrario”, Ann. Sc. Norm. Sup. Pisa, 23:3 (1969), 115–141 | MR | Zbl
[20] E. Giusti, C. Miranda, “Sulla regolarità delle soluzioni di una classe di sistemi ellittici quasilineari”, Arch. Rat. Mech. Anal., 31 (1968), 173–184 | DOI | MR | Zbl
[21] V. S. Guliyev, J. Hasanov, Y. Zeren, “Necessary and sufficient conditions for the boundedness of the Riesz potential in modified Morrey spaces”, Journal of Mathematical Inequalities, 5 (2011), 491–506 | DOI | MR | Zbl
[22] Q. Huang, “Estimates on the generalized Morrey spaces $L_\phi^{2,\lambda}$ and $\mathrm{BMO}_\psi$ for linear elliptic systems”, Indiana U. M. J., 45:2 (1996), 397–439 | MR | Zbl
[23] E. Lanconelli, S. Polidoro, “On a class of hypoelliptic evolution operators”, Rend. Sem. Mat. Univ. Politec. Torino, 52:1 (1994), 29–63 | MR | Zbl
[24] L. D. Landau, “Die kinetische Gleichung für den Fall Coulombacher Wechselwirkung”, Phis. Z. Sowietunion, 10 (1936), 154–164 | Zbl
[25] A. Lunardi, “Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $\mathbb R^n$”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24:1 (1997), 133–164 | MR | Zbl
[26] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–476 | DOI | MR
[27] M. Manfredini, “The Dirichlet problem for a class of ultraparabolic equations”, Adv. in Differential Equations, 2:5 (1997), 831–866 | MR | Zbl
[28] M. Manfredini, S. Polidoro, “Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients”, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1 (1998), 651–675 | MR | Zbl
[29] C. B. Morrey (Jr.), Multiple integrals in the calculus of variations, Springer Verlag, Berlin–Heidelberg–New York, 1966 | MR | Zbl
[30] C. B. Morrey (Jr.), “Partial regularity results for nonlinear elliptic systems”, J. Math. and Mech., 7 (1968), 649–670 | MR
[31] D. Nguyen, “Some methods for integrating Fokker–Planck–Kolmogorov equations in the theory of random oscillations”, Ukrain. Mat. Zh., 33:1 (1981), 87–91 | MR | Zbl
[32] S. Polidoro, “On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type”, Le Matematiche, 49 (1994), 53–105 | MR | Zbl
[33] S. Polidoro, “Uniqueness and representation theorems for solutions of Kolmogorov–Fokker–Planck equations”, Rendiconti di Matematica (7), 15 (1995), 535–560 | MR | Zbl
[34] S. Polidoro, M. A. Ragusa, “Hölder regularity for solutions of ultraparabolic equations in divergence form”, Potential Analysis, 14 (2001), 341–350 | DOI | MR | Zbl
[35] M. A. Ragusa, “Regularity of solutions of divergence form elliptic equations”, Proc. Amer. Math. Soc., 128 (1999), 533–540 | DOI | MR
[36] M. A. Ragusa, “Commutators of fractional integral operators on Vanishing-Morrey spaces”, J. Global Optim., 40:1–3 (2008), 361–368 | DOI | MR | Zbl
[37] M. A. Ragusa, “Homogeneous Herz spaces and regularity results”, Nonlinear Anal., 71 (2009), e1909–e1914 | DOI | MR | Zbl
[38] M. A. Ragusa, “Parabolic Herz spaces and their applications”, Appl. Math. Lett., 25:10 (2012), 1270–1273 | DOI | MR | Zbl
[39] M. A. Ragusa, “Embeddings for Morrey–Lorentz spaces”, J. Optim. Theory Appl., 154:2 (2012), 491–499. | DOI | MR | Zbl
[40] M. A. Ragusa, A. Tachikawa, “Partial regularity of the minimizers of quadratic functionals with VMO coefficients”, J. London Math. Soc., 72 (2005), 609–620 | DOI | MR | Zbl
[41] M. A. Ragusa, A. Tachikawa, “On continuity of minimizers for certain quadratic growth functionals”, J. Math. Soc. Japan, 57:39 (2005), 691–700 | DOI | MR | Zbl
[42] M. A. Ragusa, A. Tachikawa, “Regularity of the minimizers of some variational integrals with discontinuity”, Z. Anal. Anwend., 27:4 (2008), 469–482 | DOI | MR | Zbl
[43] M. A. Ragusa, A. Tachikawa, “Estimates of the derivatives of minimizers of a special class of variational integrals”, Discrete Contin. Dyn. Syst., sect. A, 31:4 (2011), 1411–1425 | DOI | MR | Zbl
[44] D. Sarason, “On functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207 (1975), 391–405 | DOI | MR | Zbl
[45] A. N. Shiryayev, Selected works of A. N. Kolmogorov, v. II, Probability theory and mathematical statistics, Kluwer Academic Publishers, Dordrecht–Boston–London, 1975 | MR
[46] L. M. Sibner, R. B. Sibner, “A non-linear Hodge de Rham theorem”, Acta Math., 125 (1970), 57–73 | DOI | MR | Zbl
[47] K. Uhlenbeck, “Regularity for a class of nonlinear elliptic systems”, Acta Math., 138 (1977), 219–240 | DOI | MR | Zbl