Operators in Morrey type spaces and applications
Eurasian mathematical journal, Tome 3 (2012) no. 3, pp. 94-109

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider partial differential equations with discontinuous coefficients and prove that, if the known term belongs to the Morrey space $L^{p,\lambda}$, the highest order derivatives of the solutions of the equations belong to the same space. As a consequence it is possible to obtain local Hölder continuity for the solutions. Moreover, are discussed some estimates for the derivatives of local minimizers of variational integrals.
@article{EMJ_2012_3_3_a5,
     author = {M. A. Ragusa},
     title = {Operators in {Morrey} type spaces and applications},
     journal = {Eurasian mathematical journal},
     pages = {94--109},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a5/}
}
TY  - JOUR
AU  - M. A. Ragusa
TI  - Operators in Morrey type spaces and applications
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 94
EP  - 109
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a5/
LA  - en
ID  - EMJ_2012_3_3_a5
ER  - 
%0 Journal Article
%A M. A. Ragusa
%T Operators in Morrey type spaces and applications
%J Eurasian mathematical journal
%D 2012
%P 94-109
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a5/
%G en
%F EMJ_2012_3_3_a5
M. A. Ragusa. Operators in Morrey type spaces and applications. Eurasian mathematical journal, Tome 3 (2012) no. 3, pp. 94-109. http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a5/