Generalized weighted Morrey spaces and higher order commutators of sublinear operators
Eurasian mathematical journal, Tome 3 (2012) no. 3, pp. 33-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the boundedness of sublinear operators and their higher order commutators generated by Calderon–Zygmund operators and Riesz potentials on generalized weighted Morrey space.
@article{EMJ_2012_3_3_a3,
     author = {V. S. Guliyev},
     title = {Generalized weighted {Morrey} spaces and higher order commutators of sublinear operators},
     journal = {Eurasian mathematical journal},
     pages = {33--61},
     year = {2012},
     volume = {3},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a3/}
}
TY  - JOUR
AU  - V. S. Guliyev
TI  - Generalized weighted Morrey spaces and higher order commutators of sublinear operators
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 33
EP  - 61
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a3/
LA  - en
ID  - EMJ_2012_3_3_a3
ER  - 
%0 Journal Article
%A V. S. Guliyev
%T Generalized weighted Morrey spaces and higher order commutators of sublinear operators
%J Eurasian mathematical journal
%D 2012
%P 33-61
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a3/
%G en
%F EMJ_2012_3_3_a3
V. S. Guliyev. Generalized weighted Morrey spaces and higher order commutators of sublinear operators. Eurasian mathematical journal, Tome 3 (2012) no. 3, pp. 33-61. http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a3/

[1] D. R. Adams, “A note on Riesz potentials”, Duke Math., 42 (1975), 765–778 | DOI | MR | Zbl

[2] A. Akbulut, I. Ekincioglu, A. Serbetci, T. Tararykova, “Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces”, Eurasian Mathematical Journal, 2:2 (2011), 5–30 | MR | Zbl

[3] A. Akbulut, V. S. Guliyev, R. Mustafayev, “On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces”, Mathematica Bohemica, 137:1 (2012), 27–43 | MR | Zbl

[4] V. I. Burenkov, V. S. Guliyev, “Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl

[5] V. I. Burenkov, V. S. Guliyev, A. Serbetci, T. V. Tararykova, “Necessary and sufficient conditions for the boundedness of genuine singular integrals in local Morrey-type spaces”, Eurasian Mathematical Journal, 1:1 (2010), 32–53 | MR | Zbl

[6] S. Chanillo, “A note on commutators”, Indiana Univ. Math. J., 23 (1982), 7–16 | DOI | MR

[7] M. Carro, L. Pick, J. Soria, V. D. Stepanov, “On embeddings between classical Lorentz spaces”, Math. Inequal. Appl., 4:3 (2001), 397–428 | MR | Zbl

[8] F. Chiarenza, M. Frasca, “Morrey spaces and Hardy–Littlewood maximal function”, Rend Mat., 7 (1987), 273–279 | MR | Zbl

[9] R. R. Coifman, C. Fefferman, “Weighted norm inequalities for maximal functions and singular integrals”, Studia Math., 51 (1974), 241–250 | MR | Zbl

[10] A. Gogatishvili, R. Mustafayev, “On a theorem of Muckenhouopt–Wheeden in generalized Morrey spaces”, Eurasian Mathematical Journal, 2:2 (2011), 134–138 | MR | Zbl

[11] R. Coifman, Y. Meyer, Au delà des Opérateurs Pseudo-Différentiels, Astérisque, 57, Société Mathématique de France, Paris, 1978 | MR

[12] Y. Ding, D. Yang, Z. Zhou, “Boundedness of sublinear operators and commutators on $L^{p,\omega}(\mathbb R^n)$”, Yokohama Math. J., 46 (1998), 15–27 | MR | Zbl

[13] X. T. Duong, L. X. Yan, “On commutators of fractional integrals”, Proc. Amer. Math. Soc., 132:12 (2004), 3549–3557 | DOI | MR | Zbl

[14] J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math., 16, Amsterdam, 1985 | MR

[15] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, New Jersey, 2004 | MR | Zbl

[16] V. S. Guliyev, “Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces”, J. Inequal. Appl., 2009 (2009), Art. ID 503948, 20 pp. | MR

[17] V. S. Guliyev, S. S. Aliyev, T. Karaman, “Boundedness of sublinear operators and commutators on generalized Morrey spaces”, Abstr. Appl. Anal., 2011 (2011), Art. ID 356041, 18 pp. | DOI | MR

[18] V. S. Guliyev, S. S. Aliyev, T. Karaman, P. Shukurov, “Boundedness of sublinear operators and commutators on generalized Morrey spaces”, Integral Equations Operator Theory, 71:3 (2011), 327–355 | DOI | MR | Zbl

[19] V. S. Guliyev, S. S. Aliyev, “Boundedness of parametric Marcinkiewicz integral operator and their commutators on generalized Morrey spaces”, Georgian Math. J., 19 (2012), 195–208 | MR

[20] V. S. Guliyev, T. Karaman, A. Serbetci, “Boundedness of sublinear operators generated by Calderon–Zygmund operators on generalized weighted Morrey spaces”, Scientic Annals of “Al. I. Cuza” University of Iasi, 2011, 18 pp., accepted

[21] V. S. Guliyev, T. Karaman, R. Ch. Mustafayev, A. Serbetci, Commutators of sublinear operators generated by Calderón–Zygmund operator on generalized weighted Morrey spaces, submitted

[22] Y. Komori, S. Shirai, “Weighted Morrey spaces and a singular integral operator”, Math. Nachr., 282:2 (2009), 219–231 | DOI | MR | Zbl

[23] Y. Lin, Sh. Lu, “Strongly singular Calderón–Zygmund operators and their commutators”, Jordan Journal of Mathematics and Statistics, 1:1 (2008), 31–49 | Zbl

[24] L. Z. Liu, “Weighted weak type estimates for commutators of Littlewood–Paley operator”, Japan. J. Math. (N.S.), 29:1 (2003), 1–13 | MR | Zbl

[25] Y. Liu, D. Chen, “The boundedness of maximal Bochner–Riesz operator and maximal commutator on Morrey type spaces”, Anal. Theory Appl., 24:4 (2008), 321–329 | DOI | MR | Zbl

[26] L. Z. Liu, S. Z. Lu, “Weighted weak type inequalities for maximal commutators of Bochner–Riesz operator”, Hokkaido Math. J., 32:1 (2003), 85–99 | DOI | MR | Zbl

[27] G. Lu, S. Lu, D. Yang, “Singular integrals and commutators on homogeneous groups”, Anal. Math., 28 (2002), 103–134 | DOI | MR | Zbl

[28] S. Lu, Y. Ding, D. Yan, Singular integrals and related topics, World Scientific Publishing, Singapore, 2006 | MR

[29] B. Muckenhoupt, “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[30] B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for fractional integrals”, Trans. Amer. Math. Soc., 192 (1974), 261–274 | DOI | MR | Zbl

[31] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[32] J. Peetre, “On the theory of $M_{p,\lambda}$”, J. Funct. Anal., 4 (1969), 71–87 | DOI | MR | Zbl

[33] X. Shi, Q. Sun, “Weighted norm inequalities for Bochner–Riesz operators and singular integral operators”, Proc. Amer. Math. Soc., 116 (1992), 665–673 | DOI | MR | Zbl

[34] F. Soria, G. Weiss, “A remark on singular integrals and power weights”, Indiana Univ. Math. J., 43 (1994), 187–204 | DOI | MR | Zbl

[35] E. M. Stein, Singular integrals and differentiability of functions, Princeton University Press, Princeton, NJ, 1970

[36] E. M. Stein, “On the functions of Littlewood–Paley, Lusin, and Marcinkiewicz”, Trans. Amer. Math. Soc., 88 (1958), 430–466 | DOI | MR

[37] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[38] A. Vargas, “Weighted weak type (1,1) bounds for rough operators”, J. Lond. Math. Soc., 54:2 (1996), 297–310 | DOI | MR | Zbl

[39] A. Torchinsky, Real Variable Methods in Harmonic Analysis, Pure and Applied Math., 123, Academic Press, New York, 1986 | MR | Zbl

[40] A. Torchinsky, S. Wang, “A note on the Marcinkiewicz integral”, Colloq. Math., 60/61 (1990), 235–243 | MR | Zbl