On oscillation of two terms linear differential equation with alternating potential
Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 135-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two terms high order linear differential equation are studied. For the case when potential alternats in any neighborhood of infinity, oscillation and nonoscillation conditions formulated in unified terms are obtained.
@article{EMJ_2012_3_2_a9,
     author = {L. K. Kussainova},
     title = {On oscillation of two terms linear differential equation with alternating potential},
     journal = {Eurasian mathematical journal},
     pages = {135--140},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a9/}
}
TY  - JOUR
AU  - L. K. Kussainova
TI  - On oscillation of two terms linear differential equation with alternating potential
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 135
EP  - 140
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a9/
LA  - en
ID  - EMJ_2012_3_2_a9
ER  - 
%0 Journal Article
%A L. K. Kussainova
%T On oscillation of two terms linear differential equation with alternating potential
%J Eurasian mathematical journal
%D 2012
%P 135-140
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a9/
%G en
%F EMJ_2012_3_2_a9
L. K. Kussainova. On oscillation of two terms linear differential equation with alternating potential. Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 135-140. http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a9/

[1] I. M. Glazman, Direct methods of qualitative analysis of singular differential operators, Jerusalim, 1965 | MR

[2] P. Hartman, Ordinary differential equations, Wiley, New York, 1964 | MR | Zbl

[3] M. Otelbaev, Estimates of the spectrum of the Sturm–Liouville operator, Gylym, Alma-Ata, 1990 (in Russian) | Zbl

[4] R. Oinarov, S. Y. Rakhimova, “Oscillation and nonoscillation of two terms linear and half-linear equations of higher order”, E. J. Qualitative Theory of Diff. Equ. Hungary, 49 (2010), 1–15 | MR

[5] M. Otelbaev, L. Kussainova, A. Bulabaev, “Estimate of the spactrum for a certain class of differential operators”, Sbornik pratz Instituta Matematiki NAN Ukraina, 6:1 (2009), 165–190 (in Russian) | Zbl

[6] K. T. Mynbaev, M. O. Otelbaev, Weighted functional spaces and differential operator spectrum, Nauka, Moscow, 1988 (in Russian) | MR | Zbl

[7] R. Oinarov, K. R. Myrzatayeva, “Nonoscillation of second-order half-linear differential equation”, Mathimatical J. (Almaty), 2007, no. 2(24), 72–82 (in Russian) | MR | Zbl

[8] L. K. Kussainova, “Embedding of weighted Sobolev space $W^l_p(\Omega,v)$ in the space $L_p(\Omega,\omega)$”, Mat. Sb., 191:2 (2000), 132–148 (in Russian) | DOI | MR | Zbl