On maximal subgroup of a~finite solvable group
Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 129-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a non-normal maximal subgroup of a finite solvable group $G$, and let $q\in\pi(F(H/\mathrm{Core}_GH))$. It is proved that $G$ has a Sylow $q$-subgroup $Q$ such that $N_G(Q)\subseteq H$.
@article{EMJ_2012_3_2_a8,
     author = {D. V. Gritsuk and V. S. Monakhov},
     title = {On maximal subgroup of a~finite solvable group},
     journal = {Eurasian mathematical journal},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a8/}
}
TY  - JOUR
AU  - D. V. Gritsuk
AU  - V. S. Monakhov
TI  - On maximal subgroup of a~finite solvable group
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 129
EP  - 134
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a8/
LA  - en
ID  - EMJ_2012_3_2_a8
ER  - 
%0 Journal Article
%A D. V. Gritsuk
%A V. S. Monakhov
%T On maximal subgroup of a~finite solvable group
%J Eurasian mathematical journal
%D 2012
%P 129-134
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a8/
%G en
%F EMJ_2012_3_2_a8
D. V. Gritsuk; V. S. Monakhov. On maximal subgroup of a~finite solvable group. Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 129-134. http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a8/

[1] K. Doerk, T. Hawkes, Finite soluble groups, de Gruyter, Berlin–New York, 1992 | MR | Zbl

[2] B. Huppert, Endliche Gruppen, v. I, Berlin–Heidelberg–New York, 1967 | Zbl

[3] V. A. Vedernikov, “On $\pi$-properties of a finite groups”, Arithmetic and subgroup structure of finite groups, Science and technics, Minsk, 1986, 13–19 (in Russian) | MR