Compact-analytical properties of variational functional in Sobolev spaces~$W^{1,p}$
Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 94-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work, conditions of welldefiniteness, compact continuity, compact differentiability and multiple compact differentiability of the Euler–Lagrange one-dimensional variational functional in Sobolev–Bochner spaces $W^{1,p}([a;b],F)$ are obtained in terms of belonging of the integrand to the corresponding Weierstrass pseudopolynomial classes.
@article{EMJ_2012_3_2_a6,
     author = {I. V. Orlov},
     title = {Compact-analytical properties of variational functional in {Sobolev} spaces~$W^{1,p}$},
     journal = {Eurasian mathematical journal},
     pages = {94--119},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a6/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Compact-analytical properties of variational functional in Sobolev spaces~$W^{1,p}$
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 94
EP  - 119
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a6/
LA  - en
ID  - EMJ_2012_3_2_a6
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Compact-analytical properties of variational functional in Sobolev spaces~$W^{1,p}$
%J Eurasian mathematical journal
%D 2012
%P 94-119
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a6/
%G en
%F EMJ_2012_3_2_a6
I. V. Orlov. Compact-analytical properties of variational functional in Sobolev spaces~$W^{1,p}$. Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 94-119. http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a6/

[1] V. I. Bogachev, Basic measure theory, v. 1, R C Dynamics, Moscow, 2006

[2] E. V. Bozhonok, Compact extrema and compact-analytical properties of the basic variational functional in Sobolev space $W^{1,2}$, Ph. D. thesis, Taurida Nat. Univ., Simferopol, 2009 (In Russian)

[3] H. Cartan, Calcul différentiel, Hermann, Paris, 1967 | MR | Zbl

[4] B. Dacorogna, Direct methods in the calculus of variations, Springer Science+Business Media, New York, 2008 | MR | Zbl

[5] M. Giaquinta, S. Hildebrandt, Calculus of variations. I, Springer Verlag, Berlin, 1996 | MR | Zbl

[6] M. R. Hestenes, Calculus of variations and optimal control, Wiley, 1966 | MR | Zbl

[7] I. V. Orlov, E. V. Bozhonok, Calculus of variations in Sobolev space $H^1$, Textbook, DIP, Simferopol, 2010 (In Russian)

[8] I. V. Orlov, “Compact extrema: a general theory and application to variational functionals”, Operator theory: Adv. and Appl., 190, Birkhäuser, Basel, 2009, 397–417 | MR | Zbl

[9] I. V. Orlov, “Extreme problems and scales of the operator spaces”, North-Holland Math. Studies, 197, Elsevier, Boston, 2004, 209–228 | DOI | MR

[10] I. V. Orlov, “Hilbert compacta, compact ellipsoids and compact extrema”, Journal of Math. Sci., 164:4 (2010), 637–647 | DOI | MR

[11] I. V. Orlov, “Inverse extremal problem for variational functionals”, Eurasian Math. Journal, 1:4 (2010), 95–115 | MR | Zbl

[12] I. V. Orlov, “Universal compacta in $l_p$”, Cybernetics and systems analysis, 46:5 (2010), 784–793 | DOI | MR

[13] K. Rektorys, Variational methods in mathematics, Science and engineering, Dr. Reidel Publ. Comp., Dordrecht, 1980 | MR | Zbl

[14] H.-J. Schmeisser, “Recent developments in the theory of function spaces with dominating mixed smoothness”, Nonlin. anal., funct. spaces and appl., Proc. of the spring school (Prague, May 30 – June 6, 2006), v. 8, 2007, 145–204 | MR | Zbl

[15] I. V. Skrypnik, Nonlinear high order elliptic equations, Naukova dumka, Kiev, 1973 (In Russian) | MR

[16] H. Triebel, “Sampling numbers and embedding constants”, Proc. of V. A. Steklov Math. Institute, 248, 2005, 275–284 | MR | Zbl

[17] L. C. Young, Lectures on the calculus of variations and optimal control theory, Saunders, 1969 | MR | Zbl