Compact-analytical properties of variational functional in Sobolev spaces~$W^{1,p}$
Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 94-119

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work, conditions of welldefiniteness, compact continuity, compact differentiability and multiple compact differentiability of the Euler–Lagrange one-dimensional variational functional in Sobolev–Bochner spaces $W^{1,p}([a;b],F)$ are obtained in terms of belonging of the integrand to the corresponding Weierstrass pseudopolynomial classes.
@article{EMJ_2012_3_2_a6,
     author = {I. V. Orlov},
     title = {Compact-analytical properties of variational functional in {Sobolev} spaces~$W^{1,p}$},
     journal = {Eurasian mathematical journal},
     pages = {94--119},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a6/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Compact-analytical properties of variational functional in Sobolev spaces~$W^{1,p}$
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 94
EP  - 119
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a6/
LA  - en
ID  - EMJ_2012_3_2_a6
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Compact-analytical properties of variational functional in Sobolev spaces~$W^{1,p}$
%J Eurasian mathematical journal
%D 2012
%P 94-119
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a6/
%G en
%F EMJ_2012_3_2_a6
I. V. Orlov. Compact-analytical properties of variational functional in Sobolev spaces~$W^{1,p}$. Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 94-119. http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a6/