Compact-analytical properties of variational functional in Sobolev spaces~$W^{1,p}$
Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 94-119
Voir la notice de l'article provenant de la source Math-Net.Ru
In the work, conditions of welldefiniteness, compact continuity, compact differentiability and multiple compact differentiability of the Euler–Lagrange one-dimensional variational functional in Sobolev–Bochner spaces $W^{1,p}([a;b],F)$ are obtained in terms of belonging of the integrand to the corresponding Weierstrass pseudopolynomial classes.
@article{EMJ_2012_3_2_a6,
author = {I. V. Orlov},
title = {Compact-analytical properties of variational functional in {Sobolev} spaces~$W^{1,p}$},
journal = {Eurasian mathematical journal},
pages = {94--119},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a6/}
}
I. V. Orlov. Compact-analytical properties of variational functional in Sobolev spaces~$W^{1,p}$. Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 94-119. http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a6/