Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_2_a5, author = {M. S. Khan and K. P. R. Rao and K. R. K. Rao}, title = {Some fixed point theorems in symmetric $G$-cone metric spaces}, journal = {Eurasian mathematical journal}, pages = {85--93}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a5/} }
TY - JOUR AU - M. S. Khan AU - K. P. R. Rao AU - K. R. K. Rao TI - Some fixed point theorems in symmetric $G$-cone metric spaces JO - Eurasian mathematical journal PY - 2012 SP - 85 EP - 93 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a5/ LA - en ID - EMJ_2012_3_2_a5 ER -
M. S. Khan; K. P. R. Rao; K. R. K. Rao. Some fixed point theorems in symmetric $G$-cone metric spaces. Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 85-93. http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a5/
[1] M. Abbas, B. E. Rhoades, “Common fixed point results for non-commuting mappings with out continuity in generalized metric spaces”, Comput. Math. Appl., 215 (2009), 262–269 | DOI | MR | Zbl
[2] H. Aydi, E. Karapinar, Z. Mustafa, “On common fixed points in $G$-Metric spaces using $(E.A)$ Property”, Comput. Math. Appl., 64:6 (2012), 1944–1956 | DOI | MR | Zbl
[3] H. Aydi, W. Shatanawi, C. Vetro, “On generalized weakly $G$-contraction mapping in $G$-metric spaces”, Comput Math Appl., 62 (2011), 4222–4229 | DOI | MR | Zbl
[4] I. Beg, M. Abbas, T. Nazir, “Generalized cone metric spaces”, J. Nonlinear Sci. Appl., 3:1 (2010), 21–31 | MR | Zbl
[5] R. Chugh, T. Kadian, A. Rani, B. E. Rhoades, “Property $P$ in $G$-metric spaces”, Fixed Point Theory Appl., 2010 (2010), Article ID 401684, 12 pp. | DOI | MR | Zbl
[6] B. C. Dhage, “Generalised metric spaces and mappings with fixed point”, Bull. Calcutta Math. Soc., 84:4 (1992), 329–336 | MR | Zbl
[7] B. C. Dhage, “On generalized metric spaces and topological srtucture. II”, Pure. Appl. Math. Sci., 40:1–2 (1994), 37–41 | MR | Zbl
[8] B. C. Dhage, “A common fixed point principle in $D$-metric spaces”, Bull. Cal. Math. Soc., 91:6 (1999), 475–480 | MR | Zbl
[9] B. C. Dhage, “Generalized metric spaces and topological srtucture. I”, Annalele Stiintifice ale Universitatii Al. I. Cuza, 46:1 (2000), 3–24 | MR | Zbl
[10] L. G. Huang, X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl., 332:2 (2007), 1468–1476 | DOI | MR | Zbl
[11] S. Jain, S. Jain, L. Bahadur, “Compatibility and weak compatibility for four self maps in a cone metric space”, Bulletin of Mathematical Analysis and Applcations, 2:1 (2010), 15–24 | MR
[12] G. Jungck, S. Radenovic, S. Radojevic, V. Rakocevic, “Common fixed point theorems for weakly compatible pairs on cone metric spaces”, Fixed Point Theory Appl., 2009 (2009), Article ID 643840, 13 pp. | DOI | MR | Zbl
[13] Z. Mustafa, F. Awawdeh, W. Shatanawi, “Fixed point theorem for expansive mappings in $G$-metric spaces”, Int. J. Contemp. Math. Sciences, 5:50 (2010), 2463–2472 | MR | Zbl
[14] Z. Mustafa, M. Khandaqji, W. Shatanawi, “Fixed point results on complete $G$-metric spaces”, Stud. Sci. Math. Hungar., 48 (2011), 304–319 | MR | Zbl
[15] Z. Mustafa, H. Obiedat, F. Awawdeh, “Some fixed point theorem for mapping on complete Gmetric spaces”, Fixed Point Theory Appl., 2008 (2008), Article ID 189870, 12 pp. | DOI | MR | Zbl
[16] Z. Mustafa, H. Obiedat, “A fixed point theorem of Riech in $G$-metric spaces”, Cubo. A Mathematics Journal, 12:1 (2010), 83–93 | DOI | MR | Zbl
[17] Z. Mustafa, W. Shatanawi, M. Bataineh, “Existence of fixed point results in $G$-metric spaces”, Int. J. Math. Math. Sci., 2009 (2009), Article ID 283028, 10 pp. | DOI | MR
[18] Z. Mustafa, B. Sims, “Some remarks concerning $D$-metric spaces”, Proceedings of the International Conferences on fixed point theory and Applications (Valencia, Spain, July, 2003), 189–198 | MR | Zbl
[19] Z. Mustafa, B. Sims, “A new approach to generalized metric spaces”, Journal of Nonlinear and Convex Analysis, 7:2 (2006), 289–297 | MR
[20] Z. Mustafa, B. Sims, “Fixed point theorems for contractive mappings in complete $G$-metric spaces”, Fixed Point Theory Appl., 2009 (2009), Article ID 917175, 10 pp. | DOI | MR
[21] S. V. R. Naidu, K. P. R. Rao, N. Srinivasa Rao, “On the topology of $D$-metric spaces and the generation of $D$-metric spaces from metric spaces”, Int. J. Math. Math. Sci., 2004:51 (2004), 2719–274 | DOI | MR
[22] S. V. R. Naidu, K. P. R. Rao, N. Srinivasa Rao, “On the concepts of balls in a $D$-metric space”, Int. J. Math. Math. Sci., 2005:1 (2005), 133–141 | DOI | MR | Zbl
[23] S. V. R. Naidu, K. P. R. Rao, N. Srinivasa Rao, “On convergent sequences and fixed point theorems in $D$-Metric spaces”, Int. J. Math. Math. Sci., 2005:12 (2005), 1969–1988 | DOI | MR | Zbl
[24] K. P. R. Rao, K. B. Lakshmi, Z. Mustafa, “A unique common fixed point theorem for six maps in $G$-metric spaces”, Int. J. Nonlinear Anal. Appl. (to appear)
[25] S. Rezapour, R. Hamlbarani, “Some notes on the paper ‘Cone metric spaces and fixed point theorems of contractive mappings’ ”, J. Math. Anal. Appl., 345 (2008), 719–724 | DOI | MR | Zbl
[26] W. Shatanawi, “Fixed point theory for contractive mappings satisfying $\phi$-maps in $G$-metric spaces”, Fixed Point Theory and Appl., 2010 (2010), Article ID 181650, 9 pp. | DOI | MR | Zbl