Trigonometric series with lacunary-monotone coefficients
Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 31-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study multiple trigonometric series with lacunary-monotone coefficients. We obtain necessary and sufficient conditions for the sum of such series to belong to $L_p$, $1$ and the generalized Lipschitz spaces (Nikol'skii spaces).
@article{EMJ_2012_3_2_a3,
     author = {M. I. Dyachenko and S. Tikhonov},
     title = {Trigonometric series with lacunary-monotone coefficients},
     journal = {Eurasian mathematical journal},
     pages = {31--52},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a3/}
}
TY  - JOUR
AU  - M. I. Dyachenko
AU  - S. Tikhonov
TI  - Trigonometric series with lacunary-monotone coefficients
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 31
EP  - 52
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a3/
LA  - en
ID  - EMJ_2012_3_2_a3
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%A S. Tikhonov
%T Trigonometric series with lacunary-monotone coefficients
%J Eurasian mathematical journal
%D 2012
%P 31-52
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a3/
%G en
%F EMJ_2012_3_2_a3
M. I. Dyachenko; S. Tikhonov. Trigonometric series with lacunary-monotone coefficients. Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 31-52. http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a3/

[1] N. K. Bary, A Treatise on Trigonometric Series, MacMillan, New York, 1964 | MR

[2] N. K. Bari, S. B. Stechkin, “Best approximations and differential properties of two conjugate functions”, Proceedings of Moscow Math. Soc., 5, 1956, 483–522 (in Russian) | MR | Zbl

[3] M. Berisha, “On the coefficients of double lacunary trigonometric series”, Serdica Math. J., 14 (1988), 68–74 | MR | Zbl

[4] Uspekhi Mat. Nauk, 47:5 (1992), 97–162 | DOI | MR | Zbl

[5] M. I. Dyachenko, E. D. Nursultanov, “Hardy–Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients”, Mat. Sb., 200:11 (2009), 45–60 | DOI | MR | Zbl

[6] M. Dyachenko, S. Tikhonov, “A Hardy–Littlewood theorem for multiple series”, Jour. Math. Anal. Appl., 339 (2008), 503–510 | DOI | MR | Zbl

[7] J.-P. Kahane, “Lacunary Taylor and Fourier series”, Bull. Amer. Math. Soc., 70 (1964), 199–213 | DOI | MR | Zbl

[8] A. A. Konyushkov, “Best approximations by trigonometric polynomials and Fourier coefficients”, Mat. Sb. (N.S.), 44(86):1 (1958), 53–84 | MR | Zbl

[9] G. G. Lorentz, “Fourier-Koeffizienten und Funktionenklassen”, Math. Z., 51 (1948), 135–149 | DOI | MR | Zbl

[10] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, 1975 | MR

[11] Matematicheskie Zametki, 74:6 (2003), 877–888 | DOI | DOI | MR | Zbl

[12] M. K. Potapov, “On Approximation by ‘angle’ ”, Proc. Conf. on Constructive Theory of Functions (Approximation Theory) (Budapest, 1969), Akadémiai Kiadó, Budapest, 1972, 371–399 | MR

[13] B. Simonov, S. Tikhonov, “Sharp Ul'yanov-type inequalities using fractional smoothness”, Journal of Approx. Theory, 162:9 (2010), 1654–1684 | DOI | MR | Zbl

[14] K. Sokol-Sokolowski, “On trigonometric series conjugate to Fourier series of two variables”, Fund. Math., 34 (1947), 166–182 | MR | Zbl

[15] S. A. Telyakovskii, “On the behaviour of sine series near the origin”, Publ. Inst. Math. Nouv. Ser., 58(72) (1995), 43–50 | MR | Zbl

[16] S. Tikhonov, “On generalized Lipschitz classes and Fourier series”, Z. Anal. Anwendungen, 23:4 (2004), 745–764 | DOI | MR | Zbl

[17] S. Tikhonov, “Best approximation and moduli of smoothness: computation and equivalence theorems”, Journal of Approx. Theory, 153 (2008), 19–39 | DOI | MR | Zbl

[18] L. Zhizhiashvili, Trigonometric Fourier series and their conjugates, Kluwer Academic Publishers, 1996 | MR | Zbl

[19] A. Zygmund, Trigonometric series, v. I, II, Third edition, Cambridge, 2002 | MR | Zbl