Solvability conditions for the first order elliptic systems on the plane
Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 139-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

Unique solvability conditions are obtained for an elliptic system of two first order real partial differential equations with unbounded coefficients.
@article{EMJ_2012_3_1_a9,
     author = {K. N. Ospanov},
     title = {Solvability conditions for the first order elliptic systems on the plane},
     journal = {Eurasian mathematical journal},
     pages = {139--142},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a9/}
}
TY  - JOUR
AU  - K. N. Ospanov
TI  - Solvability conditions for the first order elliptic systems on the plane
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 139
EP  - 142
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a9/
LA  - en
ID  - EMJ_2012_3_1_a9
ER  - 
%0 Journal Article
%A K. N. Ospanov
%T Solvability conditions for the first order elliptic systems on the plane
%J Eurasian mathematical journal
%D 2012
%P 139-142
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a9/
%G en
%F EMJ_2012_3_1_a9
K. N. Ospanov. Solvability conditions for the first order elliptic systems on the plane. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 139-142. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a9/

[1] I.N. Vekua, Generalized Analytic Functions, Pergamon Press, London, 1962 | MR | Zbl

[2] L. Bers, Theory of Pseudo-Analytic Functions, New York University, New York, 1953 | MR | Zbl

[3] L. Bers, F. John, M. Schechter, Partial differential equations, New York–London–Sydney, 1964 | MR

[4] V.S. Vinogradov, “On the Liouville theorem for generalized analytic functions”, Dokl. AN SSSR, 183:3 (1968), 503–506 (Russian) | MR | Zbl

[5] E. Mukhamadiev, S. Baizayev, “To the theory of bounded solutions of generalized Cauchy–Riemann system”, Dokl. AN SSSR, 287:2 (1986), 280–283 (Russian) | MR | Zbl

[6] K.N. Ospanov, “On the nonlinear generalized Cauchy-Riemann system on the whole plane”, Siberian Math. J., 38 (1997), 314–319 | DOI | MR | Zbl

[7] K. Ospanov, “Coercive estimates for degenerate elliptic system of equations with spectral applications”, Appl. Math. Lett., 24 (2011), 1594–1598 | DOI | MR | Zbl