Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_1_a9, author = {K. N. Ospanov}, title = {Solvability conditions for the first order elliptic systems on the plane}, journal = {Eurasian mathematical journal}, pages = {139--142}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a9/} }
K. N. Ospanov. Solvability conditions for the first order elliptic systems on the plane. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 139-142. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a9/
[1] I.N. Vekua, Generalized Analytic Functions, Pergamon Press, London, 1962 | MR | Zbl
[2] L. Bers, Theory of Pseudo-Analytic Functions, New York University, New York, 1953 | MR | Zbl
[3] L. Bers, F. John, M. Schechter, Partial differential equations, New York–London–Sydney, 1964 | MR
[4] V.S. Vinogradov, “On the Liouville theorem for generalized analytic functions”, Dokl. AN SSSR, 183:3 (1968), 503–506 (Russian) | MR | Zbl
[5] E. Mukhamadiev, S. Baizayev, “To the theory of bounded solutions of generalized Cauchy–Riemann system”, Dokl. AN SSSR, 287:2 (1986), 280–283 (Russian) | MR | Zbl
[6] K.N. Ospanov, “On the nonlinear generalized Cauchy-Riemann system on the whole plane”, Siberian Math. J., 38 (1997), 314–319 | DOI | MR | Zbl
[7] K. Ospanov, “Coercive estimates for degenerate elliptic system of equations with spectral applications”, Appl. Math. Lett., 24 (2011), 1594–1598 | DOI | MR | Zbl