Dynamical systems method (DSM) for solving nonlinear operator equations in Banach spaces
Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 86-96

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F(u)=h$ be a solvable operator equation in a Banach space $X$ with a Gateaux differentiable norm. Under minimal smoothness assumptions on $F$, sufficient conditions are given for the validity of the Dynamical Systems Method (DSM) for solving the above operator equation. It is proved that the DSM (Dynamical Systems Method) $$ \dot u(t)=-A_{a(t)}^{-1}(u(t))[F(u(t))+a(t)u(t)-f)],\quad u(0)=u_0, $$ converges to $y$ as $t\to+\infty$, for $a(t)$ properly chosen. Here $F(y)=f$, and $\dot u$ denotes the time derivative.
@article{EMJ_2012_3_1_a6,
     author = {A. G. Ramm},
     title = {Dynamical systems method {(DSM)} for solving nonlinear operator equations in {Banach} spaces},
     journal = {Eurasian mathematical journal},
     pages = {86--96},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a6/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - Dynamical systems method (DSM) for solving nonlinear operator equations in Banach spaces
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 86
EP  - 96
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a6/
LA  - en
ID  - EMJ_2012_3_1_a6
ER  - 
%0 Journal Article
%A A. G. Ramm
%T Dynamical systems method (DSM) for solving nonlinear operator equations in Banach spaces
%J Eurasian mathematical journal
%D 2012
%P 86-96
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a6/
%G en
%F EMJ_2012_3_1_a6
A. G. Ramm. Dynamical systems method (DSM) for solving nonlinear operator equations in Banach spaces. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 86-96. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a6/