Dynamical systems method (DSM) for solving nonlinear operator equations in Banach spaces
Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 86-96
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F(u)=h$ be a solvable operator equation in a Banach space $X$ with a Gateaux differentiable norm. Under minimal smoothness assumptions on $F$, sufficient conditions are given for the validity of the Dynamical Systems Method (DSM) for solving the above operator equation. It is proved that the DSM (Dynamical Systems
Method)
$$
\dot u(t)=-A_{a(t)}^{-1}(u(t))[F(u(t))+a(t)u(t)-f)],\quad u(0)=u_0,
$$
converges to $y$ as $t\to+\infty$, for $a(t)$ properly chosen. Here $F(y)=f$, and $\dot u$ denotes the time derivative.
@article{EMJ_2012_3_1_a6,
author = {A. G. Ramm},
title = {Dynamical systems method {(DSM)} for solving nonlinear operator equations in {Banach} spaces},
journal = {Eurasian mathematical journal},
pages = {86--96},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a6/}
}
A. G. Ramm. Dynamical systems method (DSM) for solving nonlinear operator equations in Banach spaces. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 86-96. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a6/