Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_1_a5, author = {M. Lin and G. Sinnamon}, title = {The generalized {Wielandt} inequality in inner product spaces}, journal = {Eurasian mathematical journal}, pages = {72--85}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a5/} }
M. Lin; G. Sinnamon. The generalized Wielandt inequality in inner product spaces. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 72-85. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a5/
[1] F.L. Bauer and A.S. Householder, “Some inequalities involving the euclidean condition of a matrix”, Math., 2 (1960), 308–311 | MR | Zbl
[2] R. Bhatia and C. Davis, “More operator versions of the Schwarz inequality”, Commun. Math. Phys., 215 (2000), 239–244 | DOI | MR | Zbl
[3] D. Boyd, “Best constants in a class of integral inequalities”, Pac. J. Math., 30 (1969), 367–383 | DOI | MR | Zbl
[4] S.S. Dragomir, “Inner product inequalities for two equivalent norms and applications”, Acta. Math. Vietnam, 34 (2009), 361–369 | MR | Zbl
[5] M.L. Eaton, “A maximization problem and its application to canonical correlation”, J. Multivariate Anal., 6 (1976), 422–425 | DOI | MR | Zbl
[6] M.L. Eaton and D. Tyler, “The asymptotic distribution of singular values with applications to canonical correlations and correspondence analysis”, J. Multivariate Anal., 50 (1994), 238–264 | DOI | MR | Zbl
[7] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, London, 1985 | MR | Zbl
[8] A.S. Househoulder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964 | MR
[9] L.Yu. Kolotilina, “The case of equality in the generalized Wielandt inequality”, J. Math. Sci. (N.Y.), 114 (2003), 1803–1807 | DOI | MR
[10] S. Liu, C. Lu, and S. Puntanen, “Matrix trace Wielandt inequalities with statistical applications”, J. Statist. Plann. Inference, 139 (2009), 2254–2260 | DOI | MR | Zbl
[11] M. Lin and G. Sinnamon, “A condition for convexity of a product of positive definite quadratic forms”, SIAM J. Matrix Anal. Appl., 32 (2011), 457–462 | DOI | MR | Zbl
[12] S.-G. Wang and W.-C. Ip, “A matrix version of the Wielandt inequality and its applications to statistics”, Linear Algebra Appl., 296 (1999), 171–181 | DOI | MR | Zbl
[13] H. Wielandt, “Inclusion theorems for eigenvalues”, National Bureau of Standards Appl. Math. Series, 29 (1953), 75–78 | MR | Zbl
[14] Z. Yan, “A unified version of Cauchy-Schwarz and Wielandt inequalities”, Linear Algebra Appl., 428 (2008), 2079–2084 | DOI | MR | Zbl
[15] L. Yeh, “A note on Wielandt's inequality”, Appl. Math. Lett., 8 (1995), 29–31 | DOI | MR | Zbl
[16] B. X. Zhang and X. H. Zhu, “Generalized matrix versions of the constrained Kantorovich and Wielandt inequalities”, Acta Math. Sinica (Chin. Ser.), 45 (2002), 151–156 | MR | Zbl