The generalized Wielandt inequality in inner product spaces
Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 72-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new inequality between angles in inner product spaces is formulated and proved. It leads directly to a concise statement and proof of the generalized Wielandt inequality, including a simple description of all cases of equality. As a consequence, several recent results in matrix analysis and inner product spaces are improved.
@article{EMJ_2012_3_1_a5,
     author = {M. Lin and G. Sinnamon},
     title = {The generalized {Wielandt} inequality in inner product spaces},
     journal = {Eurasian mathematical journal},
     pages = {72--85},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a5/}
}
TY  - JOUR
AU  - M. Lin
AU  - G. Sinnamon
TI  - The generalized Wielandt inequality in inner product spaces
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 72
EP  - 85
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a5/
LA  - en
ID  - EMJ_2012_3_1_a5
ER  - 
%0 Journal Article
%A M. Lin
%A G. Sinnamon
%T The generalized Wielandt inequality in inner product spaces
%J Eurasian mathematical journal
%D 2012
%P 72-85
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a5/
%G en
%F EMJ_2012_3_1_a5
M. Lin; G. Sinnamon. The generalized Wielandt inequality in inner product spaces. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 72-85. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a5/

[1] F.L. Bauer and A.S. Householder, “Some inequalities involving the euclidean condition of a matrix”, Math., 2 (1960), 308–311 | MR | Zbl

[2] R. Bhatia and C. Davis, “More operator versions of the Schwarz inequality”, Commun. Math. Phys., 215 (2000), 239–244 | DOI | MR | Zbl

[3] D. Boyd, “Best constants in a class of integral inequalities”, Pac. J. Math., 30 (1969), 367–383 | DOI | MR | Zbl

[4] S.S. Dragomir, “Inner product inequalities for two equivalent norms and applications”, Acta. Math. Vietnam, 34 (2009), 361–369 | MR | Zbl

[5] M.L. Eaton, “A maximization problem and its application to canonical correlation”, J. Multivariate Anal., 6 (1976), 422–425 | DOI | MR | Zbl

[6] M.L. Eaton and D. Tyler, “The asymptotic distribution of singular values with applications to canonical correlations and correspondence analysis”, J. Multivariate Anal., 50 (1994), 238–264 | DOI | MR | Zbl

[7] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, London, 1985 | MR | Zbl

[8] A.S. Househoulder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964 | MR

[9] L.Yu. Kolotilina, “The case of equality in the generalized Wielandt inequality”, J. Math. Sci. (N.Y.), 114 (2003), 1803–1807 | DOI | MR

[10] S. Liu, C. Lu, and S. Puntanen, “Matrix trace Wielandt inequalities with statistical applications”, J. Statist. Plann. Inference, 139 (2009), 2254–2260 | DOI | MR | Zbl

[11] M. Lin and G. Sinnamon, “A condition for convexity of a product of positive definite quadratic forms”, SIAM J. Matrix Anal. Appl., 32 (2011), 457–462 | DOI | MR | Zbl

[12] S.-G. Wang and W.-C. Ip, “A matrix version of the Wielandt inequality and its applications to statistics”, Linear Algebra Appl., 296 (1999), 171–181 | DOI | MR | Zbl

[13] H. Wielandt, “Inclusion theorems for eigenvalues”, National Bureau of Standards Appl. Math. Series, 29 (1953), 75–78 | MR | Zbl

[14] Z. Yan, “A unified version of Cauchy-Schwarz and Wielandt inequalities”, Linear Algebra Appl., 428 (2008), 2079–2084 | DOI | MR | Zbl

[15] L. Yeh, “A note on Wielandt's inequality”, Appl. Math. Lett., 8 (1995), 29–31 | DOI | MR | Zbl

[16] B. X. Zhang and X. H. Zhu, “Generalized matrix versions of the constrained Kantorovich and Wielandt inequalities”, Acta Math. Sinica (Chin. Ser.), 45 (2002), 151–156 | MR | Zbl