Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_1_a4, author = {A. \.Izgi}, title = {Approximation by composition of {Sz\"asz-Mirakyan} and {Durrmeyer-Chlodowsky} operators}, journal = {Eurasian mathematical journal}, pages = {63--71}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a4/} }
A. İzgi. Approximation by composition of Sz\"asz-Mirakyan and Durrmeyer-Chlodowsky operators. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 63-71. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a4/
[1] Theory of approximation, translated by C.J. Hymann, Frederick Ungar Publishing Co., New York, 1956 (English) | MR | MR
[2] Math. Notes, 20:5–6 (1976), 996-998 | Zbl
[3] A.D. Gadzhiev, “The convergence problem for a sequence of linear operators on unbounded sets and theorem analogous to that of P.P. Korovkin”, Soviet Math. Dokl., 15:5 (1974), 1433–1436 | Zbl
[4] A.D. Gadzhiev., I. Efendiev, E. Ibikli, “Generalized Bernstein-Chlodowsky polynomials”, Rocky Mt. J. Math., 28:4 (1988), 1267–1277 | MR
[5] E. İbikli, H. Karslı, “Rate of convergence of Chlodowsky type Durrmeyer operators”, Journal of inequalities in pure and applied mathematics, 6:4 (2005), 1–12 | MR
[6] N. İspir, “On modified Baskakov operators on weighted spaces”, Turk. J. Math., 26:3 (2001), 355–365 | MR
[7] N. İspir, C. Atakut, “Approximation by modified Szăsz–Mirakyan operators on weighted spaces”, Proc. Indian Acad. Sci. (Math. Sci.), 112:4 (2002), 571–578 | DOI | MR | Zbl
[8] E. İbikli, A. İzgi, I. Büyükyazıcı, Approximation of $L_p$-integrable functions by linear positive operators, Twelfth International Congress on Computational and Applied Mathematics, July 10–14, 2006
[9] O. Szăsz, “Generalization of S. Bernstein's polynomials to infinite interval”, J. Research Nat. Bur. Standarts, 45 (1950), 239–245 | DOI | MR