Minimax conditions for Schatten ideals of compact operators
Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 29-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the validity of various types of minimax condition for operators in Schatten ideals of compact operators on separable Hilbert spaces.
@article{EMJ_2012_3_1_a2,
     author = {T. Formisano and E. Kissin},
     title = {Minimax conditions for {Schatten} ideals of compact operators},
     journal = {Eurasian mathematical journal},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a2/}
}
TY  - JOUR
AU  - T. Formisano
AU  - E. Kissin
TI  - Minimax conditions for Schatten ideals of compact operators
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 29
EP  - 40
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a2/
LA  - en
ID  - EMJ_2012_3_1_a2
ER  - 
%0 Journal Article
%A T. Formisano
%A E. Kissin
%T Minimax conditions for Schatten ideals of compact operators
%J Eurasian mathematical journal
%D 2012
%P 29-40
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a2/
%G en
%F EMJ_2012_3_1_a2
T. Formisano; E. Kissin. Minimax conditions for Schatten ideals of compact operators. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a2/

[1] W. Arveson, “Operator algebras and invariant subspaces”, Ann. Math., 100:3 (1974), 433–532 | DOI | MR | Zbl

[2] W. Arveson, “Interpolation problems in operator algebras”, J. Funct. Anal., 20:3 (1975), 208–233 | DOI | MR | Zbl

[3] E. Aspland, V. Ptak, “A minimax inequality and a related numerical range”, Acta Math., 126 (1971), 53–62 | DOI | MR

[4] O.Yu. Borenstein, V.S. Shulman, “A minimax theorem”, Math. Notes, 50 (1991), 752–754 | DOI | MR

[5] I.Ts. Gohberg, M.G. Krein, Introduction to the theory of linear non-selfadjoint operators in Hilbert spaces, Nauka, Moscow, 1965 | MR | Zbl

[6] R.G. Haydon, V.S. Shulman, “On a measure-theoretical problem of Arveson”, Proc. Amer. Math. Soc., 124 (1996), 497–503 | DOI | MR | Zbl

[7] B. Ricceri, S. Simons (eds.), Minimax theory and applications, Kluwer Academic Publishers, 1998 | MR

[8] B. Ricceri, A further improvement of a minimax theorem of Borenstein and Shul'man, 2004, arXiv: 0501001v1 [math OC] | MR

[9] J. Saint Raymond, “On a minimax theorem”, Arch. Math. (Basel), 74 (2000), 432–437 | DOI | MR | Zbl

[10] V.S. Shulman, “On vector functionals and minimax inequalities”, Spectral and Evolutionary Problems, 11 (2001), 56–61 | MR