Symmetries and first integrals of a second order evolutionary operator equation
Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 18-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

A constructive method for finding some first integrals of a given evolutionary operator equation is suggested.
@article{EMJ_2012_3_1_a1,
     author = {S. A. Budochkina},
     title = {Symmetries and first integrals of a second order evolutionary operator equation},
     journal = {Eurasian mathematical journal},
     pages = {18--28},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a1/}
}
TY  - JOUR
AU  - S. A. Budochkina
TI  - Symmetries and first integrals of a second order evolutionary operator equation
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 18
EP  - 28
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a1/
LA  - en
ID  - EMJ_2012_3_1_a1
ER  - 
%0 Journal Article
%A S. A. Budochkina
%T Symmetries and first integrals of a second order evolutionary operator equation
%J Eurasian mathematical journal
%D 2012
%P 18-28
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a1/
%G en
%F EMJ_2012_3_1_a1
S. A. Budochkina. Symmetries and first integrals of a second order evolutionary operator equation. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 18-28. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a1/

[1] G. Caviglia, “Symmetry transformation, isovectors and conservation laws”, J. Math. Phys., 27:4 (1986), 972–978 | DOI | MR | Zbl

[2] R. Kurant, Partial differential equations, Mir, Moscow, 1964 (Russian) | MR

[3] P.D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure and Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl

[4] E. Noether, “Invariant variational problems”, Variational principles of mechanics, 1959, 611–630 (Russian)

[5] V.M. Savchin, Mathematical methods of mechanics of infinite-dimensional nonpotential systems, Peoples' Friendship University of Russia, Moscow, 1991 (Russian) | MR

[6] V.M. Savchin, S.A. Budochkina, “On the existence of a variational principle for an operator equation with the second derivative with respect to “time””, Mathematical Notes, 80:1 (2006), 87–94 (Russian) | DOI | MR | Zbl

[7] V.M. Savchin, S.A. Budochkina, “On indirect variational formulations for operator equations”, Journal of Function Spaces and Applications, 5:3 (2007), 231–242 | DOI | MR | Zbl

[8] V.M. Savchin, S.A. Budochkina, “Symmetries and first integrals in the mechanics of infinite-dimensional systems”, Doklady Mathematics, 425:2 (2009), 169–171 (Russian) | MR | Zbl

[9] A.N. Tikhonov, A.A. Samarsky, Equations of mathematical physics, Nauka, Moscow, 1977 (Russian)

[10] V.G. Vil'ke, Analitical and qualitative methods of mechanics of systems with infinite number of degrees of freedom, M.V. Lomonosov Moscow State University, Moscow, 1986 (Russian) | MR