Exposition of the lectures by S.\,B.~Stechkin on approximation theory
Eurasian mathematical journal, Tome 2 (2011) no. 4, pp. 5-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

Translated into English from the Russian original by A. R. Alimov, edited by V. I. Burenkov
@article{EMJ_2011_2_4_a0,
     author = {V. V. Arestov and V. I. Berdyshev and N. I. Chernykh and T. V. Demina and N. N. Kholschevnikova and S. V. Konyagin and Yu. N. Subbotin and S. A. Telyakovskii and I. G. Tsar'kov and V. A. Yudin},
     title = {Exposition of the lectures by {S.\,B.~Stechkin} on approximation theory},
     journal = {Eurasian mathematical journal},
     pages = {5--155},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_4_a0/}
}
TY  - JOUR
AU  - V. V. Arestov
AU  - V. I. Berdyshev
AU  - N. I. Chernykh
AU  - T. V. Demina
AU  - N. N. Kholschevnikova
AU  - S. V. Konyagin
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
AU  - I. G. Tsar'kov
AU  - V. A. Yudin
TI  - Exposition of the lectures by S.\,B.~Stechkin on approximation theory
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 5
EP  - 155
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_4_a0/
LA  - en
ID  - EMJ_2011_2_4_a0
ER  - 
%0 Journal Article
%A V. V. Arestov
%A V. I. Berdyshev
%A N. I. Chernykh
%A T. V. Demina
%A N. N. Kholschevnikova
%A S. V. Konyagin
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%A I. G. Tsar'kov
%A V. A. Yudin
%T Exposition of the lectures by S.\,B.~Stechkin on approximation theory
%J Eurasian mathematical journal
%D 2011
%P 5-155
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_4_a0/
%G en
%F EMJ_2011_2_4_a0
V. V. Arestov; V. I. Berdyshev; N. I. Chernykh; T. V. Demina; N. N. Kholschevnikova; S. V. Konyagin; Yu. N. Subbotin; S. A. Telyakovskii; I. G. Tsar'kov; V. A. Yudin. Exposition of the lectures by S.\,B.~Stechkin on approximation theory. Eurasian mathematical journal, Tome 2 (2011) no. 4, pp. 5-155. http://geodesic.mathdoc.fr/item/EMJ_2011_2_4_a0/

[1] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126 | DOI | MR | Zbl

[2] D. Braess, Nonlinear approximation theory, Springer, 1986 | MR | Zbl

[3] V. I. Burenkov, “Exact constants in inequalities for norms of intermediate derivatives on a finite interval. II”, Trudy Mat. Inst. Steklov, 173, 1986, 38–49 | MR | Zbl

[4] J. A. Clarkson, “Uniformly convex spaces”, Trans. Amer. Math. Soc., 40 (1936), 396–414 | DOI | MR | Zbl

[5] P. J. Davis, Interpolation and approximation, Blaisdell, Waltham, MA, 1963 | MR | Zbl

[6] M. M. Day, Normed linear spaces, Springer, Berlin, 1973 | MR | Zbl

[7] R. DeVore, The approximation of continuous functions by positive linear operators, Springer, Berlin, 1972 | MR | Zbl

[8] R. DeVore, G. G. Lorentz, Constructive approximation, Springer, Berlin, 1993 | MR | Zbl

[9] J. Diestel, J. J. Uhl, Vector measures, Amer. Math. Soc., 1977 | MR | Zbl

[10] P. Dodos, Banach spaces and descriptive set theory: Selected topics, Springer, Berlin, 2010 | MR | Zbl

[11] P. Enflo, “A counterexample to the approximation property in Banach spaces”, Acta Math., 130 (1973), 309–317 | DOI | MR | Zbl

[12] A. L. Garkavi, “On best approximation by the elements of infinite-dimensional subspaces of a certain class”, Sb. Math., 62(104):1 (1963), 104–120 | MR | Zbl

[13] A. L. Garkavi, “On Chebyshev and almost Chebyshev subspaces”, Izv. Akad. Nauk SSSR Ser. Mat., 28:4 (1964), 799–818 | MR | Zbl

[14] V. I. Ivanov, Introduction to Approximation Theory, Tula State. Univ., Tula, 1999 (in Russian)

[15] O. G. Jørsboe, L. Mejlbro, The Carleson–Hunt theorem on Fourier series, Springer, Berlin, 1982 | MR

[16] S. Ya. Havinson, Z. S. Romanova, “Approximation properties of finite-dimensional subspaces in $L^1$”, Sb. Math., 89(131):1(9) (1972), 3–15 | MR | Zbl

[17] A. N. Kolmogorov, Selected Works, ed. V. M. Tikhomirov, Kluwer, 1991 | Zbl

[18] A. N. Kolmogorov, “Une généralisation de l'inégalité de M. J. Hadamard entre les bornes supérieures des dérivées successives d'une fonction”, C. R. Acad. Sci. Paris, 207 (1938), 764–765 | Zbl

[19] N. P. Korneĭchuk, “S. M. Nikol'skii and the development of research on approximation theory in the USSR”, Russian Math. Surveys, 40:5 (1985), 83–156 | DOI | MR | Zbl

[20] N. P. Korneĭchuk, Splines in approximation theory, Nauka, Moscow, 1984 (in Russian) | MR

[21] N. P. Korneĭchuk, V. F. Babenko, A. A. Ligun, Extremal properties of polynomials and splines, Nova Science, New York, 1996 | MR | Zbl

[22] B. R. Kripke, T. J. Rivlin, “Approximations in the metric of $L^1(x,\mu)$”, Trans. Amer. Math. Soc., 119 (1965), 101–122 | MR | Zbl

[23] V. I. Krylov, Approximate calculation of integrals, Nauka, Moscow, 1967 ; Dover, New York, 2005 | MR | Zbl

[24] G. G. Lorentz, Approximation of functions, Holt, Rinehart and Winston, New York, 1966 | MR | Zbl

[25] G. G. Lorentz, S. D. Riemenschneider, K. Jetter, Birkhoff interpolation, Addison-Wesley, Reading, Mass., 1983 | MR | Zbl

[26] V. A. Markov, Über Polynome die einen geyebenen Intervalle moglichst wenig von null abweichen, St. Petersburg, 1892; Math. Ann., 77 (1916), 213–258 | DOI | MR | Zbl

[27] G. Mastroianni, G. V. Milovanović, Interpolation processes Basic theory and applications, Springer, Berlin, 2008 | MR | Zbl

[28] R. Megginson, An introduction to Banach space theory, Springer, Berlin, 1998 | MR | Zbl

[29] D. P. Milman, “On some criteria for the regularity of spaces of the type $(B)$”, Dokl. Akad. Nauk SSSR (N.S.), 20 (1938), 243–246 | Zbl

[30] I. P. Natanson, Constructive function theory, v. I, Frederic Ungar, New York, 1964 | MR | Zbl

[31] I. P. Natanson, Constructive function theory, v. III, Frederic Ungar, New York, 1965 | Zbl

[32] S. M. Nikol'skii, “Sur certaines méthodes d'approximation au moyen de sommes trigonométriques”, Izv. Akad. Nauk SSSR Ser. Mat., 4:6 (1940), 509–520 | MR | Zbl

[33] G. Nürnberger, Approximation by splines, Springer, Berlin, 1989 | MR | Zbl

[34] B. J. Pettis, “A proof that every uniformly convex space is reflexive”, Duke Math. J., 5 (1939), 249–253 | DOI | MR | Zbl

[35] J. R. Rice, The approximation of functions, v. I, Linear theory, Addison-Weseley, Reading, Mass., 1964 | Zbl

[36] J. R. Rice, The approximation of functions, v. II, Nonlinear and multivariate theory, Addison-Weseley, Reading, Mass., 1969 | Zbl

[37] T. J. Rivlin, An introduction to the approximation of functions, Blaisdell, Waltham, MA, 1969 | MR | Zbl

[38] T. J. Rivlin, The Chebyshev polynomials, Wiley, New York, 1974 | MR | Zbl

[39] K. Scherer, “On Bernstein's inequalities in Banach space”, Math. Notes, 17:6 (1975), 925–937 | MR | Zbl

[40] H. S. Shapiro, Topics in approximation theory, Springer, Berlin, 1971 | MR | Zbl

[41] I. Singer, “Some remarks on approximative compactness”, Rev. Roumaine Math. Pures Appl., 9 (1964), 167–177 | MR | Zbl

[42] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer, Berlin, 1970 | MR | Zbl

[43] I. Singer, The theory of best approximation and functional analysis, SIAM, Philadelphia, 1974 | MR | Zbl

[44] S. B. Stechkin, “Generalization of some inequalities of S. N. Bernstein”, Dokl. Math., 60 (1948), 1511–1514 | MR | Zbl

[45] A. I. Stepanets, Methods of approximation theory, Brill Academic Publ., 2005 | MR

[46] V. Tikhomirov, A. Kochurov, “Kolmogorov-type inequalities on the whole line or half line and the Lagrange principle in the theory of extremum problems”, Eurasian Math. J., 2:3 (2011), 125–142 | MR | Zbl

[47] A. F. Timan, Theory of approximation of functions of a reaf variable, Macmillan, New York, 1963 | MR

[48] V. A. Zalgaller, “$k$-dimensional directions which are singular for a convex body $F$ in $\mathbb R^n$”, Zap. Nauchn. Sem. LOMI, 27, 1972, 67–72 | MR | Zbl

[49] R. Webster, Convexity, Oxford University, Oxford, 1993 | MR

[50] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge, 1996 | MR