Order-sharp estimates for Hardy-type operators on cones of quasimonotone functions
Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 143-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-sided estimates are obtained for two types of generalized Hardy operators on cones of functions in weighted Lebesgue spaces with some properties of monotonicity.
@article{EMJ_2011_2_3_a8,
     author = {M. L. Goldman},
     title = {Order-sharp estimates for {Hardy-type} operators on cones of quasimonotone functions},
     journal = {Eurasian mathematical journal},
     pages = {143--146},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a8/}
}
TY  - JOUR
AU  - M. L. Goldman
TI  - Order-sharp estimates for Hardy-type operators on cones of quasimonotone functions
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 143
EP  - 146
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a8/
LA  - en
ID  - EMJ_2011_2_3_a8
ER  - 
%0 Journal Article
%A M. L. Goldman
%T Order-sharp estimates for Hardy-type operators on cones of quasimonotone functions
%J Eurasian mathematical journal
%D 2011
%P 143-146
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a8/
%G en
%F EMJ_2011_2_3_a8
M. L. Goldman. Order-sharp estimates for Hardy-type operators on cones of quasimonotone functions. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 143-146. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a8/

[1] G. Bennett, K.-G. Grosse-Erdmann, “Weighted Hardy inequalities for decreasing sequences and functions”, Math. Annalen, 334 (2006), 489–531 | DOI | MR | Zbl

[2] M. Carro, A. Gogatishvili, J. Martin, L. Pick, “Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces”, J. Operator Theory, 59:2 (2008), 309–332 | MR | Zbl

[3] A. Gogatishvili, M. Johansson, C. A. Okpoti, L.-E. Persson, “Characterization of embeddings in Lorentz spaces using a method of discretisation and anti-discretisation”, Bull. Austral. Math. Soc., 76 (2007), 69–92 | DOI | MR | Zbl

[4] M. L. Goldman, “Sharp estimates of the norms of Hardy-type operators on the cone of quasimonotone functions”, Proc. of the Steklov Inst. Math., 232, 2001, 109–137 | MR | Zbl

[5] M. L. Goldman, “On equivalent criteria for the boundedness of Hardy type operators on the cone of decreasing functions”, Analysis Mathematica, 37:2 (2011), 83–102 | DOI | MR | Zbl