Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2011_2_3_a8, author = {M. L. Goldman}, title = {Order-sharp estimates for {Hardy-type} operators on cones of quasimonotone functions}, journal = {Eurasian mathematical journal}, pages = {143--146}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a8/} }
M. L. Goldman. Order-sharp estimates for Hardy-type operators on cones of quasimonotone functions. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 143-146. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a8/
[1] G. Bennett, K.-G. Grosse-Erdmann, “Weighted Hardy inequalities for decreasing sequences and functions”, Math. Annalen, 334 (2006), 489–531 | DOI | MR | Zbl
[2] M. Carro, A. Gogatishvili, J. Martin, L. Pick, “Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces”, J. Operator Theory, 59:2 (2008), 309–332 | MR | Zbl
[3] A. Gogatishvili, M. Johansson, C. A. Okpoti, L.-E. Persson, “Characterization of embeddings in Lorentz spaces using a method of discretisation and anti-discretisation”, Bull. Austral. Math. Soc., 76 (2007), 69–92 | DOI | MR | Zbl
[4] M. L. Goldman, “Sharp estimates of the norms of Hardy-type operators on the cone of quasimonotone functions”, Proc. of the Steklov Inst. Math., 232, 2001, 109–137 | MR | Zbl
[5] M. L. Goldman, “On equivalent criteria for the boundedness of Hardy type operators on the cone of decreasing functions”, Analysis Mathematica, 37:2 (2011), 83–102 | DOI | MR | Zbl