Methods of trigonometric approximation and generalized smoothness.~I
Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 98-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a unified approach to trigonometric approximation and study its interrelation with smoothness properties of functions. In the first part our concern lies on convergence of the Fourier means, interpolation means and families of linear trigonometric polynomial operators in the scale of the $L_p$-spaces with $0$. We establish a general convergence theorem which allows to determine the ranges of convergence for approximation methods generated by classical kernels. The second part will deal with the equivalence of the approximation errors for families of linear polynomial operators generated by classical kernels in terms of $K$-functionals generated by homogeneous functions and general moduli of smoothness. It will also be shown that the results of the classical approximation theory on the Fourier means and interpolation means in the case $1\le p\le+\infty$, classical differential operators and moduli of smoothness are direct consequences of our general approach.
@article{EMJ_2011_2_3_a6,
     author = {K. Runovski and H.-J. Schmeisser},
     title = {Methods of trigonometric approximation and generalized {smoothness.~I}},
     journal = {Eurasian mathematical journal},
     pages = {98--124},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a6/}
}
TY  - JOUR
AU  - K. Runovski
AU  - H.-J. Schmeisser
TI  - Methods of trigonometric approximation and generalized smoothness.~I
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 98
EP  - 124
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a6/
LA  - en
ID  - EMJ_2011_2_3_a6
ER  - 
%0 Journal Article
%A K. Runovski
%A H.-J. Schmeisser
%T Methods of trigonometric approximation and generalized smoothness.~I
%J Eurasian mathematical journal
%D 2011
%P 98-124
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a6/
%G en
%F EMJ_2011_2_3_a6
K. Runovski; H.-J. Schmeisser. Methods of trigonometric approximation and generalized smoothness.~I. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 98-124. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a6/

[1] J. Bergh, J. Löfström, Interpolation spaces, Springer, Berlin–Heidelberg, 1976 | MR | Zbl

[2] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On the method of approximation by families of linear polynomial operators”, Z. Anal. Anw., 19:3 (2000), 677–693 | DOI | MR | Zbl

[3] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On the approximation by generalized sampling series in $L_p$-metrics”, Sampling Theory in Signal and Image Proc. (STSIP), 5:1 (2006), 59–87 | MR | Zbl

[4] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On quality of approximation by families of generalized sampling series”, Sampling Theory in Signal and Image Proc. (STSIP), 8:2 (2009), 105–126 | MR | Zbl

[5] P. Butzer,W. Splettstösser, R. Stens, “The sampling theorem and linear prediction in signal analysis”, Jahresberichte der Dt. Math-Verein, 90 (1988), 1–70 | MR | Zbl

[6] P. Butzer, R. Nessel, Fourier analysis and approximation, v. 1, Academic Press, New York–London, 1971 | MR

[7] W. Chen, Z. Ditzian, “Best approximation and $K$-functionals”, Acta Math. Hungar., 75:3 (1997), 165–208 | DOI | MR | Zbl

[8] R. DeVore, G. Lorentz, Constructive approximation, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl

[9] Z. Ditzian, “Measure of smoothness related to the Laplacian”, Trans. AMS, 326 (1991), 407–422 | DOI | MR | Zbl

[10] Z. Ditzian, “On Fejér and Bochner–Riesz means”, J. Fourier Analysis and Appl., 11 (2005), 489–496 | DOI | MR | Zbl

[11] Z. Ditzian, K. Ivanov, “Strong converse inequalities”, J. d'Analyse Math., 61 (1993), 61–111 | DOI | MR | Zbl

[12] Z. Ditzian, V. Hristov, K. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0

1$”, Constr. Approx., 11 (1995), 67–83 | DOI | MR | Zbl

[13] Z. Ditzian, K. Runovski, “Averages and $K$-functionals related to the Laplacian”, J. Approx. Theory, 97 (1999), 113–139 | DOI | MR | Zbl

[14] Z. Ditzian, K. Runovski, “Realization and smoothness related to the Laplacian”, Acta Math. Hungar., 93 (2001), 189–223 | DOI | MR | Zbl

[15] H. G. Feichtinger, F. Weisz, “The Segal algebra $S_0(\mathbb R^d )$ and norm summability of Fourier series and Fourier transforms”, Monatsh. Math., 148 (2006), 333–349 | DOI | MR | Zbl

[16] L. Grafakos, Classical Fourier analysis, Springer, New York, 2008 | MR | Zbl

[17] V. Ivanov, “Direct and inverse theorems of approximation theory in the metrics $L_p$ for $0

1$”, Mat. Zametki, 18:5 (1975), 641–658 (in Russian) | MR | Zbl

[18] V. Ivanov, V. Yudin, “On trigonometric system in $L_p$, $0

1$”, Mat. Zametki, 28:6 (1980), 859–868 (in Russian) | MR | Zbl

[19] L. Hörmander, The analysis of linear partial differential operators, v. I, Springer, Berlin, 1990

[20] V. Hristov, K. Ivanov, “Realization of $K$-functionals on subsets and constrained approximation”, Math. Balkanica (New Series), 4 (1990), 236–257 | MR | Zbl

[21] P. Korovkin, Linear operators and approximation theory, Fizmatgiz, Moscow, 1959 (in Russian) | MR

[22] M. Potapov, “Approximation “by angle” and embedding theorems”, Math. Balkanica, 2 (1972), 183–188 | MR

[23] W. Rudin, Functional analysis, McGraw-Hill Inc., New York, 1991 | MR | Zbl

[24] V. Rukasov, K. Runovski, H.-J. Schmeisser, “On convergence of families of linear polynomial operators”, Functiones et Approx., 41 (2009), 41–54 | DOI | MR | Zbl

[25] V. Rukasov, K. Runovski, H.-J. Schmeisser, “Approximation by families of linear trigonometric polynomial operators and smoothness properties of functions”, Math. Nachr., 284:11–12 (2011), 1523–1537 | DOI | MR | Zbl

[26] Ross. Akad. Nauk Matem. Sbornik, 184:2 (1993), 33–42 | DOI | MR | Zbl

[27] Ross. Akad. Sci. Matem. Sbornik, 185:8 (1994), 81–102 | DOI | MR | Zbl

[28] K. Runovski, I. Rystsov, H.-J. Schmeisser, “Computational aspects of a method of stochastic approximation”, Z. Anal. Anw., 25 (2006), 367–383 | DOI | MR | Zbl

[29] K. Runovski, H.-J. Schmeisser, “On some extensions of Bernstein inequalities for trigonometric polynomials”, Functiones et Approx., 29 (2001), 125–142 | MR

[30] K. Runovski, H.-J. Schmeisser, “Inequalities of Calderon-Zygmund type for trigonometric polynomials”, Georgian Math. J., 8:1 (2001), 165–179 | MR | Zbl

[31] K. Runovski, H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means”, Journal of Comp. Anal. and Appl., 6:3 (2004), 211–220 | MR

[32] K. Runovski, H.-J. Schmeisser, “On approximation methods generated by Bochner-Riesz kernels”, J. Fourier Anal. and Appl., 14 (2008), 16–38 | DOI | MR | Zbl

[33] K. Runovski, H.-J. Schmeisser, “On convergence of families of linear polynomial operators generated by matrices of multipliers”, Eurasian Math. J., 1:3 (2010), 112–133 | MR | Zbl

[34] K. Runovski, H.-J. Schmeisser, “On families of linear polynomial operators generated by Riesz kernels”, Eurasian Math. J., 1:4 (2010), 124–139 | MR | Zbl

[35] K. Runovski, H.-J. Schmeisser, “Smoothness and function spaces generated by homogeneous multipliers”, J. Function Spaces and Appl., 2011 (to appear) | MR

[36] K. Runovski, H.-J. Schmeisser, On $K$-Functionals generated by homogeneous functions, Preprint, 2010

[37] K. Runovski, H.-J. Schmeisser, On polynomial $K$-functionals generated by homogeneous functions, Preprint, 2011

[38] K. Runovski, H.-J. Schmeisser, On modulus of continuity related to Riesz derivative, Jenaer Schriften zur Mathematik und Informatik, Math/Inf/01/11, 2011

[39] H.-J. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, John Wiley Sons, Chichester, 1987 | MR | Zbl

[40] S. B. Stechkin, “On the order of approximation of continuous functions”, Izv. Akad. Nauk USSR, 15:3 (1951), 219–242 | MR | Zbl

[41] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970 | MR

[42] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971 | MR

[43] A. I. Stepanets, Methods of approximation theory, v. I, Proc. of Inst. of Math., Kiev, 2002 | MR

[44] A. I. Stepanets, Methods of approximation theory, v. II, Proc. of Inst. of Math., Kiev, 2002 | MR

[45] E. A. Storozhenko, V. G. Krotov, P. Oswald, “Direct and inverse theorems of Jackson type in the spaces $L_p$, $0

1$”, Mat. Sbornik, 98(140):3 (1975), 395–415 (in Russian) | MR | Zbl

[46] E. A. Storozhenko, P. Oswald, “Moduli of smoothness and best approximation in the spaces $L_p$, $0

1$”, Analysis Math., 3:2 (1977), 141–150 | DOI | MR | Zbl

[47] E. A. Storozhenko, P. Oswald, “Jackson theorems in the spaces $L_p(\mathbb R^n)$, $0

1$”, Sib. Mat J., 19:4 (1978), 888–901 (in Russian) | Zbl

[48] S. Tikhonov, “Moduli of smoothness and the interrelation of some classes of functions”, Function Spaces, Interpolation Theory and Related Topics, Proc. of Int. Conf. in Honour of J. Peetre on his 65-th birthday (Lund, Sweden, August 17–22, 2000), W. de Gruyter, Berlin–New York, 2002, 413–424 | MR

[49] R. Trigub, “Absolute convergence of Fourier integrals, summability of Fourier series and approximation by polynomial functions on the torus”, Izv. Akad. Nauk SSSR. Ser. Mat., 44:6 (1980), 1378–1409 (in Russian) | MR | Zbl

[50] R. M. Trigub, E. S. Belinsky, Fourier analysis and approximation of functions, Kluwer, Dordrecht, 2004 | Zbl

[51] A. Zygmund, Trigonometric series, v. 1, 2, Cambridge Univ. Press, Cambridge, 1990