Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2011_2_3_a6, author = {K. Runovski and H.-J. Schmeisser}, title = {Methods of trigonometric approximation and generalized {smoothness.~I}}, journal = {Eurasian mathematical journal}, pages = {98--124}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a6/} }
K. Runovski; H.-J. Schmeisser. Methods of trigonometric approximation and generalized smoothness.~I. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 98-124. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a6/
[1] J. Bergh, J. Löfström, Interpolation spaces, Springer, Berlin–Heidelberg, 1976 | MR | Zbl
[2] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On the method of approximation by families of linear polynomial operators”, Z. Anal. Anw., 19:3 (2000), 677–693 | DOI | MR | Zbl
[3] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On the approximation by generalized sampling series in $L_p$-metrics”, Sampling Theory in Signal and Image Proc. (STSIP), 5:1 (2006), 59–87 | MR | Zbl
[4] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On quality of approximation by families of generalized sampling series”, Sampling Theory in Signal and Image Proc. (STSIP), 8:2 (2009), 105–126 | MR | Zbl
[5] P. Butzer,W. Splettstösser, R. Stens, “The sampling theorem and linear prediction in signal analysis”, Jahresberichte der Dt. Math-Verein, 90 (1988), 1–70 | MR | Zbl
[6] P. Butzer, R. Nessel, Fourier analysis and approximation, v. 1, Academic Press, New York–London, 1971 | MR
[7] W. Chen, Z. Ditzian, “Best approximation and $K$-functionals”, Acta Math. Hungar., 75:3 (1997), 165–208 | DOI | MR | Zbl
[8] R. DeVore, G. Lorentz, Constructive approximation, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl
[9] Z. Ditzian, “Measure of smoothness related to the Laplacian”, Trans. AMS, 326 (1991), 407–422 | DOI | MR | Zbl
[10] Z. Ditzian, “On Fejér and Bochner–Riesz means”, J. Fourier Analysis and Appl., 11 (2005), 489–496 | DOI | MR | Zbl
[11] Z. Ditzian, K. Ivanov, “Strong converse inequalities”, J. d'Analyse Math., 61 (1993), 61–111 | DOI | MR | Zbl
[12] Z. Ditzian, V. Hristov, K. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0
1$”, Constr. Approx., 11 (1995), 67–83 | DOI | MR | Zbl[13] Z. Ditzian, K. Runovski, “Averages and $K$-functionals related to the Laplacian”, J. Approx. Theory, 97 (1999), 113–139 | DOI | MR | Zbl
[14] Z. Ditzian, K. Runovski, “Realization and smoothness related to the Laplacian”, Acta Math. Hungar., 93 (2001), 189–223 | DOI | MR | Zbl
[15] H. G. Feichtinger, F. Weisz, “The Segal algebra $S_0(\mathbb R^d )$ and norm summability of Fourier series and Fourier transforms”, Monatsh. Math., 148 (2006), 333–349 | DOI | MR | Zbl
[16] L. Grafakos, Classical Fourier analysis, Springer, New York, 2008 | MR | Zbl
[17] V. Ivanov, “Direct and inverse theorems of approximation theory in the metrics $L_p$ for $0
1$”, Mat. Zametki, 18:5 (1975), 641–658 (in Russian) | MR | Zbl[18] V. Ivanov, V. Yudin, “On trigonometric system in $L_p$, $0
1$”, Mat. Zametki, 28:6 (1980), 859–868 (in Russian) | MR | Zbl[19] L. Hörmander, The analysis of linear partial differential operators, v. I, Springer, Berlin, 1990
[20] V. Hristov, K. Ivanov, “Realization of $K$-functionals on subsets and constrained approximation”, Math. Balkanica (New Series), 4 (1990), 236–257 | MR | Zbl
[21] P. Korovkin, Linear operators and approximation theory, Fizmatgiz, Moscow, 1959 (in Russian) | MR
[22] M. Potapov, “Approximation “by angle” and embedding theorems”, Math. Balkanica, 2 (1972), 183–188 | MR
[23] W. Rudin, Functional analysis, McGraw-Hill Inc., New York, 1991 | MR | Zbl
[24] V. Rukasov, K. Runovski, H.-J. Schmeisser, “On convergence of families of linear polynomial operators”, Functiones et Approx., 41 (2009), 41–54 | DOI | MR | Zbl
[25] V. Rukasov, K. Runovski, H.-J. Schmeisser, “Approximation by families of linear trigonometric polynomial operators and smoothness properties of functions”, Math. Nachr., 284:11–12 (2011), 1523–1537 | DOI | MR | Zbl
[26] Ross. Akad. Nauk Matem. Sbornik, 184:2 (1993), 33–42 | DOI | MR | Zbl
[27] Ross. Akad. Sci. Matem. Sbornik, 185:8 (1994), 81–102 | DOI | MR | Zbl
[28] K. Runovski, I. Rystsov, H.-J. Schmeisser, “Computational aspects of a method of stochastic approximation”, Z. Anal. Anw., 25 (2006), 367–383 | DOI | MR | Zbl
[29] K. Runovski, H.-J. Schmeisser, “On some extensions of Bernstein inequalities for trigonometric polynomials”, Functiones et Approx., 29 (2001), 125–142 | MR
[30] K. Runovski, H.-J. Schmeisser, “Inequalities of Calderon-Zygmund type for trigonometric polynomials”, Georgian Math. J., 8:1 (2001), 165–179 | MR | Zbl
[31] K. Runovski, H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means”, Journal of Comp. Anal. and Appl., 6:3 (2004), 211–220 | MR
[32] K. Runovski, H.-J. Schmeisser, “On approximation methods generated by Bochner-Riesz kernels”, J. Fourier Anal. and Appl., 14 (2008), 16–38 | DOI | MR | Zbl
[33] K. Runovski, H.-J. Schmeisser, “On convergence of families of linear polynomial operators generated by matrices of multipliers”, Eurasian Math. J., 1:3 (2010), 112–133 | MR | Zbl
[34] K. Runovski, H.-J. Schmeisser, “On families of linear polynomial operators generated by Riesz kernels”, Eurasian Math. J., 1:4 (2010), 124–139 | MR | Zbl
[35] K. Runovski, H.-J. Schmeisser, “Smoothness and function spaces generated by homogeneous multipliers”, J. Function Spaces and Appl., 2011 (to appear) | MR
[36] K. Runovski, H.-J. Schmeisser, On $K$-Functionals generated by homogeneous functions, Preprint, 2010
[37] K. Runovski, H.-J. Schmeisser, On polynomial $K$-functionals generated by homogeneous functions, Preprint, 2011
[38] K. Runovski, H.-J. Schmeisser, On modulus of continuity related to Riesz derivative, Jenaer Schriften zur Mathematik und Informatik, Math/Inf/01/11, 2011
[39] H.-J. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, John Wiley Sons, Chichester, 1987 | MR | Zbl
[40] S. B. Stechkin, “On the order of approximation of continuous functions”, Izv. Akad. Nauk USSR, 15:3 (1951), 219–242 | MR | Zbl
[41] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970 | MR
[42] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971 | MR
[43] A. I. Stepanets, Methods of approximation theory, v. I, Proc. of Inst. of Math., Kiev, 2002 | MR
[44] A. I. Stepanets, Methods of approximation theory, v. II, Proc. of Inst. of Math., Kiev, 2002 | MR
[45] E. A. Storozhenko, V. G. Krotov, P. Oswald, “Direct and inverse theorems of Jackson type in the spaces $L_p$, $0
1$”, Mat. Sbornik, 98(140):3 (1975), 395–415 (in Russian) | MR | Zbl[46] E. A. Storozhenko, P. Oswald, “Moduli of smoothness and best approximation in the spaces $L_p$, $0
1$”, Analysis Math., 3:2 (1977), 141–150 | DOI | MR | Zbl[47] E. A. Storozhenko, P. Oswald, “Jackson theorems in the spaces $L_p(\mathbb R^n)$, $0
1$”, Sib. Mat J., 19:4 (1978), 888–901 (in Russian) | Zbl[48] S. Tikhonov, “Moduli of smoothness and the interrelation of some classes of functions”, Function Spaces, Interpolation Theory and Related Topics, Proc. of Int. Conf. in Honour of J. Peetre on his 65-th birthday (Lund, Sweden, August 17–22, 2000), W. de Gruyter, Berlin–New York, 2002, 413–424 | MR
[49] R. Trigub, “Absolute convergence of Fourier integrals, summability of Fourier series and approximation by polynomial functions on the torus”, Izv. Akad. Nauk SSSR. Ser. Mat., 44:6 (1980), 1378–1409 (in Russian) | MR | Zbl
[50] R. M. Trigub, E. S. Belinsky, Fourier analysis and approximation of functions, Kluwer, Dordrecht, 2004 | Zbl
[51] A. Zygmund, Trigonometric series, v. 1, 2, Cambridge Univ. Press, Cambridge, 1990