On continuity of the spectrum of a~singular quasi-differential operator with respect to a~parameter
Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 67-81
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain sufficient conditions for continuity of the eigenvalues of semibounded quasi-differential operators of order $2n$ on the half-axis with respect to the parameters that appear in the corresponding differential expression. In addition we obtain a generalization of the well-known result of M. G. Krein [9] concerning description of the quadratic form of a regular quasi-differential operator in the singular case, when the deficiency indices of the minimal operator are equal to $(n,n)$.
@article{EMJ_2011_2_3_a3,
author = {Kh. K. Ishkin},
title = {On continuity of the spectrum of a~singular quasi-differential operator with respect to a~parameter},
journal = {Eurasian mathematical journal},
pages = {67--81},
publisher = {mathdoc},
volume = {2},
number = {3},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a3/}
}
TY - JOUR AU - Kh. K. Ishkin TI - On continuity of the spectrum of a~singular quasi-differential operator with respect to a~parameter JO - Eurasian mathematical journal PY - 2011 SP - 67 EP - 81 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a3/ LA - en ID - EMJ_2011_2_3_a3 ER -
Kh. K. Ishkin. On continuity of the spectrum of a~singular quasi-differential operator with respect to a~parameter. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 67-81. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a3/