On the null-controllability of the heat exchange process
Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 5-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the heat exchange process, where the temperature inside some domain is controlled by $m$ convectors acting on the boundary, is considered. The control parameter is a vector-function, whose components are equal to the magnitude of the output of hot or cold air produced by each convector. The necessary and sufficient conditions, which initial temperature must satisfy for achieving the zero value by the projection of the temperature into some $m$-dimensional subspace, are studied.
@article{EMJ_2011_2_3_a0,
     author = {Sh. Alimov},
     title = {On the null-controllability of the heat exchange process},
     journal = {Eurasian mathematical journal},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a0/}
}
TY  - JOUR
AU  - Sh. Alimov
TI  - On the null-controllability of the heat exchange process
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 5
EP  - 19
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a0/
LA  - en
ID  - EMJ_2011_2_3_a0
ER  - 
%0 Journal Article
%A Sh. Alimov
%T On the null-controllability of the heat exchange process
%J Eurasian mathematical journal
%D 2011
%P 5-19
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a0/
%G en
%F EMJ_2011_2_3_a0
Sh. Alimov. On the null-controllability of the heat exchange process. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 5-19. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a0/

[1] S. Albeverio, S. Alimov, “On a time-optimal control problem associated with the heat exchange process”, Applied Mathematics and Optimization, 57:1 (2008), 58–68 | DOI | MR | Zbl

[2] S. A. Alimov, A. T. Umarov, “On the null-controllability of the heat exchange process”, Herald of the National University of Uzbekistan, 3 (2010), 21–24 (in Russian) | MR

[3] S. A. Alimov, “On a control problem associated with the heat transfer process”, Eurasian Mathematical Journal, 1:2 (2010), 17–30 | MR | Zbl

[4] V. Barbu, A. Răşcanu, G. Tessitore, “Carleman estimates and controllability of linear stochastic heat equations”, Appl. Math. Optim., 47:2 (2003), 97–120 | DOI | MR | Zbl

[5] H. O. Fattorini, “Time and norm optimal control for linear parabolic equations: necessary and sufficient conditions”, Control and Estimation of Distributed Parameter Systems, International Series of Numerical Mathematics, 143, Birkhäuser, Basel, 2002, 151–168

[6] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Translations of Math. Monographs, 187, American Mathematical Society, Providence, Rhode Island, 2000 | MR | Zbl

[7] P. Gurevich, W. Jäger, A. Skubachevskii, “On periodicity of solutions for thermocontrol problems with hysteresis-type switches”, SIAM J. Math. Anal., 41:2 (2009), 733–752 | DOI | MR | Zbl

[8] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and quasi-linear equations of elliptic type, Nauka, Moscow, 1964 (in Russian) | MR

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasi-linear equations of parabolic type, Nauka, Moscow, 1967 (in Russian) | MR

[10] J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod Gauthier-Villars, Paris, 1968 | MR | Zbl

[11] L. Miller, “Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time”, J. Differential Equations, 204 (2004), 202–226 | DOI | MR | Zbl

[12] N. Yu. Satimov, M. Tukhtasinov, “Game problems on a fixed interval in controlled first-order evolution equations”, Mathematical Notes, 80:4 (2006), 578–589 | DOI | MR | Zbl

[13] G. Tenenbaum, M. Tucshak, “New blow-up rates for fast controls of Schrödinger and heat equations”, Jour. of Differential Equations, 243 (2007), 70–100 | DOI | MR | Zbl

[14] A. N. Tikhonov, A. A. Samarsky, Equations of mathematical physics, Nauka, Moscow, 1966 | Zbl

[15] M. Tukhtasinov, U. Ibragimov, “On the invariant sets associated with integral constraint of control”, Izvestiya vuz. Math., 2011, no. 8, 69–76 (in Russian) | MR | Zbl

[16] V. S. Vladimirov, Equations of mathematical physics, Marcel Dekker, New York, 1971 | MR | Zbl