On a~theorem of Muchenhoupt--Wheeden in generalized Morrey spaces
Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 134-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find a condition on a function $w$ which ensures the equivalence of norms of the Riesz potential and the fractional maximal function in generalized Morrey spaces $\mathcal M_{p,w}(\mathbb R^n)$.
@article{EMJ_2011_2_2_a7,
     author = {A. Gogatishvili and R. Mustafayev},
     title = {On a~theorem of {Muchenhoupt--Wheeden} in generalized {Morrey} spaces},
     journal = {Eurasian mathematical journal},
     pages = {134--138},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a7/}
}
TY  - JOUR
AU  - A. Gogatishvili
AU  - R. Mustafayev
TI  - On a~theorem of Muchenhoupt--Wheeden in generalized Morrey spaces
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 134
EP  - 138
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a7/
LA  - en
ID  - EMJ_2011_2_2_a7
ER  - 
%0 Journal Article
%A A. Gogatishvili
%A R. Mustafayev
%T On a~theorem of Muchenhoupt--Wheeden in generalized Morrey spaces
%J Eurasian mathematical journal
%D 2011
%P 134-138
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a7/
%G en
%F EMJ_2011_2_2_a7
A. Gogatishvili; R. Mustafayev. On a~theorem of Muchenhoupt--Wheeden in generalized Morrey spaces. Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 134-138. http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a7/

[1] D. R. Adams, “A note on Riesz potentials”, Duke Math. J., 42 (1975), 765–778 | DOI | MR | Zbl

[2] D. R. Adams, J. Xiao, “Nonlinear potential analysis on Morrey spaces and their capacities”, Indiana University Mathematics Journal, 53:6 (2004), 1629–1663 | DOI | MR | Zbl

[3] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl

[4] M. Carro, A. Gogatishvili, J. Martin, L. Pick, “Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces”, J. Operator Theory, 59:2 (2008), 309–332 | MR | Zbl

[5] L. Grafakos, Modern Fourier Analysis, Springer-Verlag, New York, 2009 | MR | Zbl

[6] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[7] B. Muckenhoupt, R. L. Wheeden, “Weighted norm inequalities for fractional integrals”, Trans. of AMS, 192 (1974), 261–274 | DOI | MR | Zbl