About the spectrum of the Laplace operator
Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 129-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

The famous French scientist J. Hadamard constructed the well-known example illustrating the incorrectness of the Cauchy problem for the Laplace equation. Since then, the question arises whether there exists a Volterra problem for the Laplace equation. In this paper we prove a theorem for a wide class of correct restrictions of the maximal operator $\widehat L$ and the correct extensions of the minimal operator $L_0$, generated by the Laplace operator, which are not Volterra problems.
@article{EMJ_2011_2_2_a6,
     author = {B. N. Biyarov},
     title = {About the spectrum of the {Laplace} operator},
     journal = {Eurasian mathematical journal},
     pages = {129--133},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a6/}
}
TY  - JOUR
AU  - B. N. Biyarov
TI  - About the spectrum of the Laplace operator
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 129
EP  - 133
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a6/
LA  - en
ID  - EMJ_2011_2_2_a6
ER  - 
%0 Journal Article
%A B. N. Biyarov
%T About the spectrum of the Laplace operator
%J Eurasian mathematical journal
%D 2011
%P 129-133
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a6/
%G en
%F EMJ_2011_2_2_a6
B. N. Biyarov. About the spectrum of the Laplace operator. Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 129-133. http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a6/

[1] B. N. Biyarov, About spectral properties of correct restrictions and extensions of one class of differential operators, Candidate's degree thesis, IMM AN KazSSR, Alma-Ata, 1989 (in Russian)

[2] N. Dunford, J. T. Schwartz, Linear operators. Spectral theory. Self-adjont operators in Hilbert space, Mir, Moscow, 1966 (in Russian) | MR | Zbl

[3] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Nauka, Moscow, 1965 (in Russian) | MR | Zbl

[4] L. Hörmander, “On the theory of general partial differential operators”, Acta Math., 94 (1955), 161–248 | DOI | MR | Zbl

[5] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov, “About extensions and restrictions of operators in Banach space”, Uspekhi Mat. Nauk, 37:4 (1982), 116–123 (in Russian)

[6] S. G. Mihlin, Linear equations in partial derivatives, Higher School, Moscow, 1977 (in Russian)

[7] H. Triebel, Interpolation theory, function spaces, differential operators, Birkhäuser, Berlin, 1977 | MR