About the spectrum of the Laplace operator
Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 129-133

Voir la notice de l'article provenant de la source Math-Net.Ru

The famous French scientist J. Hadamard constructed the well-known example illustrating the incorrectness of the Cauchy problem for the Laplace equation. Since then, the question arises whether there exists a Volterra problem for the Laplace equation. In this paper we prove a theorem for a wide class of correct restrictions of the maximal operator $\widehat L$ and the correct extensions of the minimal operator $L_0$, generated by the Laplace operator, which are not Volterra problems.
@article{EMJ_2011_2_2_a6,
     author = {B. N. Biyarov},
     title = {About the spectrum of the {Laplace} operator},
     journal = {Eurasian mathematical journal},
     pages = {129--133},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a6/}
}
TY  - JOUR
AU  - B. N. Biyarov
TI  - About the spectrum of the Laplace operator
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 129
EP  - 133
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a6/
LA  - en
ID  - EMJ_2011_2_2_a6
ER  - 
%0 Journal Article
%A B. N. Biyarov
%T About the spectrum of the Laplace operator
%J Eurasian mathematical journal
%D 2011
%P 129-133
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a6/
%G en
%F EMJ_2011_2_2_a6
B. N. Biyarov. About the spectrum of the Laplace operator. Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 129-133. http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a6/