Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces
Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 5-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces. We reduce this problem to the problem of boundedness of the supremal operator in weighted $L_p$-spaces on the cone of non-negative non-decreasing functions. This makes it possible to derive sharp sufficient conditions for boundedness for all admissible values of the numerical parameters, which, for a certain range of the numerical parameters, coincide with the necessary ones.
@article{EMJ_2011_2_2_a0,
author = {A. Akbulut and I. Ekincioglu and A. Serbetci and T. Tararykova},
title = {Boundedness of the anisotropic fractional maximal operator in anisotropic local {Morrey-type} spaces},
journal = {Eurasian mathematical journal},
pages = {5--30},
publisher = {mathdoc},
volume = {2},
number = {2},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a0/}
}
TY - JOUR AU - A. Akbulut AU - I. Ekincioglu AU - A. Serbetci AU - T. Tararykova TI - Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces JO - Eurasian mathematical journal PY - 2011 SP - 5 EP - 30 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a0/ LA - en ID - EMJ_2011_2_2_a0 ER -
%0 Journal Article %A A. Akbulut %A I. Ekincioglu %A A. Serbetci %A T. Tararykova %T Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces %J Eurasian mathematical journal %D 2011 %P 5-30 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a0/ %G en %F EMJ_2011_2_2_a0
A. Akbulut; I. Ekincioglu; A. Serbetci; T. Tararykova. Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces. Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 5-30. http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a0/