Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces
Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 5-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces. We reduce this problem to the problem of boundedness of the supremal operator in weighted $L_p$-spaces on the cone of non-negative non-decreasing functions. This makes it possible to derive sharp sufficient conditions for boundedness for all admissible values of the numerical parameters, which, for a certain range of the numerical parameters, coincide with the necessary ones.
@article{EMJ_2011_2_2_a0,
     author = {A. Akbulut and I. Ekincioglu and A. Serbetci and T. Tararykova},
     title = {Boundedness of the anisotropic fractional maximal operator in anisotropic local {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {5--30},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a0/}
}
TY  - JOUR
AU  - A. Akbulut
AU  - I. Ekincioglu
AU  - A. Serbetci
AU  - T. Tararykova
TI  - Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 5
EP  - 30
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a0/
LA  - en
ID  - EMJ_2011_2_2_a0
ER  - 
%0 Journal Article
%A A. Akbulut
%A I. Ekincioglu
%A A. Serbetci
%A T. Tararykova
%T Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces
%J Eurasian mathematical journal
%D 2011
%P 5-30
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a0/
%G en
%F EMJ_2011_2_2_a0
A. Akbulut; I. Ekincioglu; A. Serbetci; T. Tararykova. Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces. Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 5-30. http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a0/

[1] D. R. Adams, “A note on Riesz potentials”, Duke Math. J., 42 (1975), 765–778 | DOI | MR | Zbl

[2] O. V. Besov, V. P. Il'in, P. I. Lizorkin, “The $L_p$-estimates of a certain class of non-isotropically singular integrals”, Dokl. Akad. Nauk SSSR, 169 (1966), 1250–1253 (in Russian) | MR | Zbl

[3] M. Bramanti, M.C. Cerutti, “Commutators of singular integrals on homogeneous spaces”, Boll. Un. Mat. Ital. B, 10:7 (1996), 843–883 | MR | Zbl

[4] V. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafayev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex variables and elliptic equations, 55:8–10 (2010), 739–758 | DOI | MR | Zbl

[5] Doklady Ross. Akad. Nauk. Matematika, 391:5 (2003), 591–594 | MR | Zbl

[6] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl

[7] Doklady Ross. Akad. Nauk. Matematika, 409:4 (2006), 443–447 | DOI | MR | MR | Zbl

[8] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the fractional maximal operators in the local Morrey-type spaces”, J. Comput. Appl. Math., 208:1 (2007), 280–301 | DOI | MR | Zbl

[9] Doklady Ross. Akad. Nauk. Matematika, 412:5 (2007), 585–589 | DOI | MR

[10] V. I. Burenkov, V. S. Guliyev, “Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces”, Potential Analysis, 30:3 (2009), 211–249 | DOI | MR | Zbl

[11] V. I. Burenkov, V. S. Guliyev, A. Serbetci, T. V. Tararykova, “Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces”, Eurasian Mathematical Journal, 1:1 (2010), 32–53 | MR | Zbl

[12] Doklady Ross. Akad. Nauk. Matematika, 422:1 (2008), 11–14 | DOI | MR | Zbl

[13] F. Chiarenza, M. Frasca, “Morrey spaces and Hardy–Littlewood maximal function”, Rend. Math., 7 (1987), 273–279 | MR | Zbl

[14] E. B. Fabes, N. Rivère, “Singular integrals with mixed homogeneity”, Studia Math., 27 (1966), 19–38 | MR | Zbl

[15] D. Fan, S. Lu, D. Yang, “Boundedness operators in Morrey spaces on homogeneous spaces and its applications”, Acta Math. Sinica (N.S.), 14, suppl. (1998), 625–634 | MR | Zbl

[16] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, 1998 | MR | Zbl

[17] V. S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in $\mathbb R^n$, Doctor's degree thesis, Mat. Inst. Steklov, Moscow, 1994 (in Russian)

[18] V. S. Guliyev, Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, Elm, Baku, 1999 (in Russian)

[19] V. S. Guliyev, “Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces”, J. Inequal. Appl., 2009, Art. ID 503948, 20 pp. | MR

[20] V. S. Guliyev, R. Ch. Mustafayev, “Integral operators of potential type in spaces of homogeneous type”, Doklady Ross. Akad. Nauk. Matematika, 354:6 (1997), 730–732 (in Russian) | MR

[21] V. S. Guliyev, R. Ch. Mustafayev, “Fractional integrals in spaces of functions defined on spaces of homogeneous type”, Anal. Math., 24:3 (1998), 181–200 (in Russian) | DOI | MR

[22] T. Mizuhara, “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic Analysis, ICM 90 Satellite Proceedings, ed. S. Igari, Springer-Verlag, Tokyo, 1991, 183–189 | MR

[23] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[24] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl

[25] S. Spanne, “Sur l'interpolation entre les espaces $\mathcal L^{p,\Phi}_k$”, Ann. Schola Norm. Sup. Pisa, 20 (1966), 625–648 | MR | Zbl

[26] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl