On the singular numbers of correct restrictions of non-selfadjoint elliptic differential operators
Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 145-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are established on a correct restriction of an elliptic differential operator of order $2l$ defined on a bounded domain in $\mathbb R^n$ with sufficiently smooth boundary, ensuring that its singular numbers $s_k$ are of order $k^{-\frac{2l}n}$. As an application certain estimates are obtained for the deviation upon domain perturbation of singular numbers of such correct restrictions.
@article{EMJ_2011_2_1_a8,
     author = {V. I. Burenkov and M. Otelbaev},
     title = {On the singular numbers of correct restrictions of non-selfadjoint elliptic differential operators},
     journal = {Eurasian mathematical journal},
     pages = {145--148},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a8/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - M. Otelbaev
TI  - On the singular numbers of correct restrictions of non-selfadjoint elliptic differential operators
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 145
EP  - 148
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a8/
LA  - en
ID  - EMJ_2011_2_1_a8
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A M. Otelbaev
%T On the singular numbers of correct restrictions of non-selfadjoint elliptic differential operators
%J Eurasian mathematical journal
%D 2011
%P 145-148
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a8/
%G en
%F EMJ_2011_2_1_a8
V. I. Burenkov; M. Otelbaev. On the singular numbers of correct restrictions of non-selfadjoint elliptic differential operators. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 145-148. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a8/

[1] V. I. Burenkov, Sobolev spaces on domains, B. G. Teubner, Stuttgart–Leipzig, 1998 | MR | Zbl

[2] V. I. Burenkov, P. D. Lamberti, “Spectral stability of Dirichlet second order uniformly elliptic operators”, J. Differential Equations, 244 (2008), 1712–1740 | DOI | MR | Zbl

[3] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov, “On problems of extension and restriction of operators”, Dokl. Ac. Sci. USSR, 271:6 (1983), 1307–1310 | MR | Zbl

[4] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Dunod, Paris, 1968 | Zbl

[5] M. Otelbaev, A. N. Shynybekov, “On well posed problems of Bitsadze–Samarskii type”, Dokl. Ac. Sci. USSR, 265:4 (1982), 815–819 | MR | Zbl

[6] H. Trielel, “Approximation nubers in function spaces and the distribution of eigenvalues of some fractal elliptic operators”, J. Approximation Theory, 129 (2004), 1–27 | DOI | MR