Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2011_2_1_a8, author = {V. I. Burenkov and M. Otelbaev}, title = {On the singular numbers of correct restrictions of non-selfadjoint elliptic differential operators}, journal = {Eurasian mathematical journal}, pages = {145--148}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a8/} }
TY - JOUR AU - V. I. Burenkov AU - M. Otelbaev TI - On the singular numbers of correct restrictions of non-selfadjoint elliptic differential operators JO - Eurasian mathematical journal PY - 2011 SP - 145 EP - 148 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a8/ LA - en ID - EMJ_2011_2_1_a8 ER -
%0 Journal Article %A V. I. Burenkov %A M. Otelbaev %T On the singular numbers of correct restrictions of non-selfadjoint elliptic differential operators %J Eurasian mathematical journal %D 2011 %P 145-148 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a8/ %G en %F EMJ_2011_2_1_a8
V. I. Burenkov; M. Otelbaev. On the singular numbers of correct restrictions of non-selfadjoint elliptic differential operators. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 145-148. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a8/
[1] V. I. Burenkov, Sobolev spaces on domains, B. G. Teubner, Stuttgart–Leipzig, 1998 | MR | Zbl
[2] V. I. Burenkov, P. D. Lamberti, “Spectral stability of Dirichlet second order uniformly elliptic operators”, J. Differential Equations, 244 (2008), 1712–1740 | DOI | MR | Zbl
[3] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov, “On problems of extension and restriction of operators”, Dokl. Ac. Sci. USSR, 271:6 (1983), 1307–1310 | MR | Zbl
[4] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Dunod, Paris, 1968 | Zbl
[5] M. Otelbaev, A. N. Shynybekov, “On well posed problems of Bitsadze–Samarskii type”, Dokl. Ac. Sci. USSR, 265:4 (1982), 815–819 | MR | Zbl
[6] H. Trielel, “Approximation nubers in function spaces and the distribution of eigenvalues of some fractal elliptic operators”, J. Approximation Theory, 129 (2004), 1–27 | DOI | MR