Asymptotic behaviour of a~bootstrap branching process
Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 128-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study weak convergence of sequences of random probability measures generated by bootstrap branching processes. Let $\{Z(k),k\ge0\}$ be a branching stochastic process with non-stationary immigration given by an offspring distribution $\{p_j(\theta),j\ge0\}$ depending on the unknown parameter $\theta\in\Theta\subseteq\mathbb R$. We estimate $\theta$ by an estimator $\hat\theta_n$ based on a sample $\{Z(i)$, $i=1,\dots,n\}$. Given $\hat\theta_n$, we generate the bootstrap branching process (BBP) $\{Z^{\hat\theta_n}(k),k\ge0\}$ for each $n=1,2,\dots$ with the offspring distribution $\{p_j(\hat\theta_n),j\ge0\}$. We derive conditions on the estimator $\hat\theta_n$ which are sufficient and necessary for the bootstrap process to have the same asymptotic properties as the original process. These results allow us to investigate the validity of the bootstrap without using an explicit form of the estimator. In applications of branching processes obtaining samples of large sizes is difficult. Therefore, the bootstrap process can be used to generate multiple samples of large size.
@article{EMJ_2011_2_1_a7,
     author = {I. Rahimov},
     title = {Asymptotic behaviour of a~bootstrap branching process},
     journal = {Eurasian mathematical journal},
     pages = {128--144},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a7/}
}
TY  - JOUR
AU  - I. Rahimov
TI  - Asymptotic behaviour of a~bootstrap branching process
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 128
EP  - 144
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a7/
LA  - en
ID  - EMJ_2011_2_1_a7
ER  - 
%0 Journal Article
%A I. Rahimov
%T Asymptotic behaviour of a~bootstrap branching process
%J Eurasian mathematical journal
%D 2011
%P 128-144
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a7/
%G en
%F EMJ_2011_2_1_a7
I. Rahimov. Asymptotic behaviour of a~bootstrap branching process. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 128-144. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a7/

[1] P. Billingsley, Probability and Measure, Wiley and Sons, New York, 1979 | MR | Zbl

[2] S. Datta, T. N. Sriram, “A modified bootstrap for branching processes with immigration”, Stoch. Proc. Appl., 56 (1995), 275–294 | DOI | MR | Zbl

[3] S. Datta, “Bootstrapping”, Encyclopedia of statistical sciences, Second edition, ed. S. Kotz, Wiley and Sons, New York, 2005 | MR

[4] A. C. Davidson, D. V. Hinkley, Bootstrap methods and their applications, Cambridge University Press, Cambridge, 2003

[5] B. Efron, “Bootstrap methods-another look at the jackknife”, Ann. Statist., 7 (1979), 1–26 | DOI | MR | Zbl

[6] B. Efron, R. Tibshirani, An introduction to the bootstrap, Chapman and Hall Ltd, New York, 1993 | MR | Zbl

[7] P. Haccou, P. Jagers, V. A. Vatutin, Branching processes: Variation, Growth and Extinction of populations, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[8] P. Guttorp, Statistical inference for branching processes, Wiley, New York, 1991 | MR | Zbl

[9] S. N. Lahiri, “Bootstrap methods: a review”, Frontiers in Statistics, eds. J. Fan, H. Koul, Imperial College Press, London, 2006 | MR | Zbl

[10] I. Rahimov, “Functional limit theorems for critical processes with immigration”, Adv. Appl. Probab., 39:4 (2007), 1054–1069 | DOI | MR | Zbl

[11] I. Rahimov, “Limit distributions for weighted estimators of the offspring mean in a branching process”, TEST, 18:3 (2009), 568–583 | DOI | MR | Zbl

[12] I. Rahimov, “Approximation of fluctuations in a sequence of nearly critical branching processes”, Stochastic models, 25:2 (2009), 348–373 | DOI | MR | Zbl

[13] I. Rahimov, “Approximation of a sum of martingale-differences generated by a bootstrap branching process”, Workshop on Branching Processes and their Applications, Badajoz, Spain, April 20–23, 2009 | MR

[14] J. Shao, D. Tu, The jackknife and bootstrap, Springer, New York, 1995 | MR | Zbl

[15] T. N. Sriram, “Invalidity of bootstrap for critical branching processes with immigration”, Ann. Statist., 22 (1994), 1013–1023 | DOI | MR | Zbl

[16] T. J. Sweeting, “On conditional weak convergence”, J. Theoret. Probability, 2:2 (1989), 461–474 | DOI | MR | Zbl

[17] S. Xiong, G. Li, “Some results on the convergence of conditional distributions”, Stat. Prob. Letters, 78 (2008), 3249–3253 | DOI | MR | Zbl