On scores in multipartite hypertournaments
Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 112-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss two types of hypertournaments, one $[\alpha_i]_1^k$-multipartite hypertournament ($[\alpha_i]_1^k$-MHT) and the second $(\alpha_i)_1^k$-multipartite hypertournament ($(\alpha_i)_1^k$-MHT). We obtain necessary and sufficient conditions for the $k$ lists of non-negative integers in non-decreasing order to be the losing score lists (score lists) of $[\alpha_i]_1^k$-MHT and that of $(\alpha_i)_1^k$-MHT. We extend this concept to more general class of $[\alpha_i]_1^k$-multipartite multihypertournament ($[\alpha_i]_1^k$-MMHT) and $(\alpha_i)_1^k$-multipartite multihypertournament ($(\alpha_i)_1^k$-MMHT).
@article{EMJ_2011_2_1_a5,
     author = {S. Pirzada},
     title = {On scores in multipartite hypertournaments},
     journal = {Eurasian mathematical journal},
     pages = {112--119},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a5/}
}
TY  - JOUR
AU  - S. Pirzada
TI  - On scores in multipartite hypertournaments
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 112
EP  - 119
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a5/
LA  - en
ID  - EMJ_2011_2_1_a5
ER  - 
%0 Journal Article
%A S. Pirzada
%T On scores in multipartite hypertournaments
%J Eurasian mathematical journal
%D 2011
%P 112-119
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a5/
%G en
%F EMJ_2011_2_1_a5
S. Pirzada. On scores in multipartite hypertournaments. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 112-119. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a5/

[1] C. Berge, Graphs and Hypergraphs, North-Holland Mathematical Library, 6, North-Holland Publishing Co., Amsterdam–London, 1973 | MR | Zbl

[2] Y. Koh, S. Ree, “Score sequences of hypertournament matrices”, J. Korea Soc. Math. Educ. Ser. B Pure and Applied Math., 8:2 (2001), 185–191 | MR | Zbl

[3] Y. Koh, S. Ree, “On $k$-hypertournament matrices”, Linear Algebra and its Applications, 373 (2003), 183–195 | DOI | MR | Zbl

[4] H. G. Landau, “On dominance relations and the structure of animal societies. The condition for a score structure”, Bull. Math. Biophys., 15 (1953), 143–148 | DOI | MR

[5] S. Pirzada, T. A. Chishti, T. A. Naikoo, “Score lists in $[h,k]$-bipartite hypertournaments”, Disc. Math. and Appl., 19:3 (2009), 321–328 | DOI | MR | Zbl

[6] S. Pirzada, G. Zhou, “Score lists in $(h,k)$-bipartite hypertournaments”, Applied Mathematics, J. Chinese Universities, 22:4 (2007), 485–489 | DOI | MR | Zbl

[7] S. Pirzada, T. A. Naikoo, G. Zhou, “Score lists in tripartite hypertournaments”, Graphs and Combinatorics, 23 (2007), 445–454 | DOI | MR | Zbl

[8] S. Pirzada, G. Zhou, “Score sequences in oriented $k$-hypergraphs”, European J. Pure and Appl. Math., 1:3 (2008), 10–20 | MR | Zbl

[9] S. Pirzada, G. Zhou, “On $k$-hypertournament losing scores”, Acta Univ. Sapientiae, Informatica, 2:1 (2010), 5–9 | Zbl

[10] S. Pirzada, G. Zhou, A. Ivanyi, “Score lists of multipartite hypertournaments”, Acta Univ. Sapien. Informatica, 2:2 (2010), 184–193 | MR | Zbl

[11] C. Wang, G. Zhou, “Note on the degree sequences of $k$-hypertournaments”, Discrete Math., 308:11 (2008), 2292–2296 | DOI | MR | Zbl

[12] G. Zhou, T. Yao, K. Zhang, “On score sequences of $k$-hypertournaments”, European J. Combin., 21:8 (2000), 993–1000 | DOI | MR | Zbl

[13] G. Zhou, S. Pirzada, “Degree sequences in oriented $k$-hypergraphs”, J. Appl. Math. and Computing, 27 (2008), 149–158 | DOI | MR | Zbl