On scores in multipartite hypertournaments
Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 112-119
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we discuss two types of hypertournaments, one $[\alpha_i]_1^k$-multipartite hypertournament ($[\alpha_i]_1^k$-MHT) and the second $(\alpha_i)_1^k$-multipartite hypertournament ($(\alpha_i)_1^k$-MHT). We obtain necessary and sufficient conditions for the $k$ lists of non-negative integers in non-decreasing order to be the losing score lists (score lists) of $[\alpha_i]_1^k$-MHT and that of $(\alpha_i)_1^k$-MHT. We extend this concept to more general class of $[\alpha_i]_1^k$-multipartite multihypertournament ($[\alpha_i]_1^k$-MMHT) and $(\alpha_i)_1^k$-multipartite multihypertournament ($(\alpha_i)_1^k$-MMHT).
@article{EMJ_2011_2_1_a5,
author = {S. Pirzada},
title = {On scores in multipartite hypertournaments},
journal = {Eurasian mathematical journal},
pages = {112--119},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a5/}
}
S. Pirzada. On scores in multipartite hypertournaments. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 112-119. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a5/