On interpolation of pairs of generalized spaces of Besov type
Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 32-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate generalized spaces of Besov type defined with the help of certain positive infinitely differentiable functions of polynomial growth and describe the $K$-functionals for pairs of $H$-spaces and for the pairs of $B$-spaces. We prove interpolation theorems for spaces with different anisotropy. Spaces of functions of mixed smoothness are characterized as “B-products” and interpolation theorems for these spaces are proved. Moreover, we establish embedding and trace theorems.
@article{EMJ_2010_1_4_a2,
     author = {A. G. Baghdasaryan},
     title = {On interpolation of pairs of generalized spaces of {Besov} type},
     journal = {Eurasian mathematical journal},
     pages = {32--77},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a2/}
}
TY  - JOUR
AU  - A. G. Baghdasaryan
TI  - On interpolation of pairs of generalized spaces of Besov type
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 32
EP  - 77
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a2/
LA  - en
ID  - EMJ_2010_1_4_a2
ER  - 
%0 Journal Article
%A A. G. Baghdasaryan
%T On interpolation of pairs of generalized spaces of Besov type
%J Eurasian mathematical journal
%D 2010
%P 32-77
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a2/
%G en
%F EMJ_2010_1_4_a2
A. G. Baghdasaryan. On interpolation of pairs of generalized spaces of Besov type. Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 32-77. http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a2/

[1] A. G. Baghdasaryan, “On the intermediate spaces and quasi-linearizability of a pair of spaces of Sobolev–Liouville type”, Analysis Math., 24 (1998), 3–14 | DOI

[2] J. Contemporary Math. Anal., 23 (1988) | MR

[3] A. G. Baghdasaryan, “Interpolation and traces of functions from certain functional spaces”, Dokl. Akad. Nauk Arm. SSR, 87:5 (1988), 207–211 (Russian) | MR

[4] J. Contemporary Math. Anal., 36 (2001) | MR

[5] J. Berg, J. Löfström, Interpolation spaces. An introduction, Springer, Berlin, 1976 | MR

[6] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and embedding theorems, Nauka, Moscow, 1975 (Russian) ; English transl. v. 1, John Wiley and sons, New York, 1978 ; v. 2, 1979 | MR | Zbl | Zbl

[7] R. A. DeVore, S. V. Konyagin, V. N. Temlyakov, “Hyperbolic wavelet approximation”, Constr. Approx., 14 (1998), 1–26 | DOI | MR

[8] Soviet. Math. Dokl., 4 (1963) | MR | Zbl

[9] Proc. Steklov Inst. Math., 173 (1986) | MR | Zbl

[10] Proc. Steklov Inst. Math., 131 (1974) | MR | Zbl

[11] Proc. Steklov Inst. Math., 3 (1990), 163–184 | MR | Zbl

[12] L. Maligranda, “On commutativity of interpolation with intersection”, 13-th Winter School on Abstract Analysis, Palermo, 1985, 113–118 | MR | Zbl

[13] Springer, Berlin, 1975 | MR

[14] H.-J. Schmeisser, W. Sickel, Spaces of functions of mixed smoothness and approximation from hyperbolic crosses, Jenaer Schriften zur Math. und Inform., 2002

[15] H.-J. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, Wiley, Chichester, 1987 | MR | Zbl

[16] H. Triebel, “General function spaces. III. (Spaces $B_{p,q}^{g(x)}$ and $F_{p,q}^{g(x)}$, $1

\infty$: basic properties)”, Analysis Math., 3 (1977), 221–249 | DOI | MR | Zbl

[17] H. Triebel, Interpolation theory. Function spaces. Differential operators, North Holland, Amsterdam, 1978 | MR | Zbl

[18] H. Triebel, Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl

[19] Russian Math. Serveys, 20 (1965) | MR | Zbl